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EXECUTIVE SUMMARY

This report describes the accomplishments of an SBIR Phase

II project to develop a functional programming language and

graphics tools for programming via data flow diagrams. The

period covered is from August, 1984 through July, 1986. -our
objectives and plans for Phase III are also preseited.

Innovations

- The chief innovations in this project were the development

and full implementation of a functional programming language, and
the development of a graphical programming technique with support

tools that translate data flow diagrams into executable code.

Accompl ishment s

The first part of our research was to develop a functional

programming language. A compiler and run-time support system for

the language described in our Phase II proposal were built and
first released in February, 1985. This system was then used
experimentally within the company. Several language refinements
were made based on user comments, and a second release of the
compiler and run-time system was completed in June, 1985. The

results of further experimental use and additional enhancements
have been incorporated in a final SBIR project release completed

inJuly, 1986.

The second part of our research was to develop a graphical

programming technique that would allow programs to be defined via
data flow diagrams. We built an interactive, mouse-driven data
flow diagram editor and a compiler that generates executable code
from the diagrams created using the editor. The first release of

the editor was completed in January, 1986. A second release

which includes an improved user interface was completed in June,

iii
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1986. The data flow diagram compiler was created by extending

the functional language compiler and was completed in June, 1986.

In addition to the development of these prototype products,

we have written many sample programs to test our system and to

demonstrate the practicality of functional programming. De-

scriptions of the three largest programs we have written are:

included in this report. These programs illustrate many of the
advantages that functional programming provides over conventional

programming techniques. Functional programming concepts do
"scale upm and can handle large application problems as effec-

tively as simple examples.

Phase III

In Phase III, we plan to produce a commercial version of our

language and will focus our initial marketing efforts on the

software research and developmnent community. We will continue to

work on publishing the results of our research and development

efforts, and will conduct seminars and tutorials on functional

programming for selected audiences. We will also continue to use
our language and graphics tools within the company to specify,

design, prototype, and implement software. In addition, we are

pursuing research and development support to develop spin-off :

ideas generated by this project. One of these, for example, is a

multiprocessor computer architecture that is based on our run-

time software system and is specifically designed for high-speed

execution of functional programs.

iii



TABLE OF CONTENTS

Executive Summary

1. First Year Accomplishments1

Compiler and Run-Time System1

Data Flow Graphics Groundwork 3

2. Second Year Accomplishments 4

Compiler and Language Extensions 4

Run-Time System Enhancements 6

4Data Flow Diagram Editor 7

Data Flow Diagram Compiler 9

Application Programs 11

3. Phase-Ill Strategy 13

Comnmercial Product Plans 13

Further Research and Development 14

References 16

Annexes

A. Ernest Userrs Guide

B. van user's Guide
C. Application Programs

D. Bibliography

V

N~ N\~



1. First Year Accomplishments
-----------------------------------------

Our goals for the f irst year of this project were to develop

a compiler and run-time support system for a functional program-

ming language, and to develop some basic building blocks for our

data flow diagramming tools.

Compiler and Run-Time System

Our first efforts were directed at building a compiler and

run-time support system for the functional programming language

we developed (on paper) in our Phase I project. Our approach to

the development of the compiler was to use an automated parser

generator (Zuse [11) and to program translation action routines

in Pascal. The compiler produces a low-level form of functional

program code, which is then executed by the run-time system. The
run-time system was also written in Pascal.

The compiler was constructed by transforming the BNF grammar
~: for our language (see Annex A, Appendix A) into the LL(l) form

,J~V., -required by the parser generator. With this grammar and a few

pages of Pascal code, we constructed a language recognizer, which

performed no translation but could read functional program code

and detect syntax errors. The development continued by incre-

mentally adding and testing Pascal code to perform the transla-

tion of each component in the grammar. This approach produced a

highly reliable and easily modifiable end product.

The run-time system was developed in parallel with the

compiler. Its function is to interpret the low-level object code

combinator expression tree) was standardized early in the pro-

ject, which gave the compiler and run-time system a well-defined

interface and has proved quite successful. The run-time system

is based on a technique developed by Turner [21. It executes the
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low-level object code by a success4'on of tree transformations and

arithmetic and logical operations.

One of the features of our run-time system is the garbage-

collection algorithm. We adopted an algorithm called storage

scavenging, which had been developed for SmallTalk [3]. one of

the few characteristics our language shares with SmallTalk is

that the run-time systems consume storage rapidly, while the

programs themselves take up relatively little space. Storage
scavenging takes maximum advantage of this and has proved to be

very efficient.

An informal evaluation of our functional language and its

compiler and run-time system was conducted first by writing a

number of functional programs ourselves, and then by distributing

the user's guide and software within the company. The comments

we got back and our own experience with the language indicated

the need for several modifications and enhancements. Chief among

these were calls for higher performance, type checking, and

better documentation.

The second release of our language contained three features

that had been omitted in the original implementation: a name,
patterned arguments, and separate compilation. The language was

named Ernest -- so that we could say we were programming in

Ernest. Patterns provide a very convenient notation for describ-

ing structured data such as records, sequences, and trees, which

are awkward to manipulate with primitive operations. (See pages

10 and 11 of the Ernest User's Guide in Annex A.) Separate

compilation of functions is a natural extension of our original

language, since all functions are "pure" code and are independent

of any surrounding environment. These extensions were relatively

easy to make by modifying the grammar and adding new translation

2
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To improve run-time performance, we added a number of new

primitive tree transformation operations and high-level function-
forming operations. The new tree transformations are hidden from
users but they reduce the size of the intermediate object code

16 and yield faster execution [4]. The most common high-level

function-forming operations (construct, filter, generate, map,
reduce, and scan) were added to the interpreter as built-in
operations. These operations use less storage and run consider-
ably faster than their user-defined counterparts.

In addition to the changes in the software, we completely

rewrote the user's guide. The syntax and features of the lan-
guage were more thoroughly described and the new built-in func-
tions were fully documented.

Data Flow Graphics Groundwork

The first graphics program we developed was to draw data

flow diagrams from a detailed specification file. This program
could display complete data flow diagrams and provided a basis

for the development of the interactive diagram editor. In addi-
tion, the specification file was standardized as the interface

between the editor and the data flow diagram compiler.

The graphics software was built in several layers. The

first layer provided a GKS-like interface to the commercial

graphics package we used. The second layer positioned and drew
data flow diagram symbols. The third layer added text for symbol

*-. '.- labels. The top layer, at this level of development, read an
*, ,interface file and displayed the specified diagram.

3



2. Second Year Accomplishments
--------------------- ----------------

V: Our goals for the second year of this project were to

improve the capabilities of the Ernest compiler and run-time

system, to complete our data flow diagram editor and compiler,

and to conduct evaluations of the practicality of functional pro-

gramming for application software development.

Compiler and Language Extensions

The most significant changes we made in the Ernest compiler

were to split it into separate passes. This simplified the

programs for each pass and allowed us to experiment with new

features more easily. The first pass reads Ernest source code

and produces an abstract syntax tree (AST), which is a half-

digested form of the original program code. The second pass

reads the abstract syntax tree and generates object code for

execution. The configuration of these components is shown in

-. Figure 1.

We made significant improvements in pass-one in the report-

ing of program syntax errors. We also added procedures that

attempt to repair simple errors such as missing parentheses, and

to resynchronize with program source code after more serious

flaws such as omitting the "else" part of a conditional expres-

sion. (Earlier versions of the compiler simply stopped at the

first error.) In pass-two we added several peep-hole optimiza-

tions and found a way to share objec code that had been dupli-

cated earlier.

An additional, intermediate stage was to have been added to

,. the compiler to provide type checking. Our original approach was
to infer or derive all the necessary type information directly

from function definitions and program code, as described by L

Milner [5]. This approach simplifies function definitions by

4
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Figure 1. Two-Pass Ernest Compiler Configuration
-----

eliminating redundant type specifications and, at the same time,

allows the broadest interpretation of each function's type. The

algorithms for this analysis have been developed and tested (see

Annex C), but they do not provide a sufficient type mechanism for

a practical programming language. Hence, we have not yet

incorporated them into the compiler.

The application programs we developed immediately indicated

needs for enumerated and variant-record types. Declarations for

$ such types cannot be inferred from function definitions or pro-

gram code. Ernest must, therefore, be extended to capture this

essential information. Enumerated types are straightforward.
Records are more challenging because we would like to allow

programmers to specify types with the same level of generality

(i.e., full polymorphism) as types derived from function defini-

5
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tions. Integrating type declaration facilities into a language,

though, must be done carefully and cautiously to avoid the pit-

falls of complicating program specifications and unnecessarily

restricting type definitions. Furthermore, it may not be pos-
sible to make only a "minor" extension for type declarations.

Run-Time System Enhancements

Our highest priority for the run-time system was to improve

its performance. Both storage space and execution speed limit

the scale of application programs that can be implemented using

our system. Hence, we were motivated to make improvements
wherever possible. For example, to conserve storage space, we

developed a more compact internal representation of sequences and
character strings. We also made substantial improvements in both

the compiler and the run-time system by streamlining I/O opera-

tions.

Before making these changes, we investigated three promising

alternative apprcaches to run-time environments that had been

reported in the literature. We found that one, the G-machine

[6], would not provide significantly higher performance. The

second, supercombinators [7], would require more extensive modi-

fications to the compiler than we were prepared to undertake.
The third, threaded code [8], would significantly reduce the

portability of our prototype system. Hence, we chose to continue

to refine our original approach.

Our second priority for the run-time system was to solve a

shortcoming of demand-driven or "lazy" evaluation that prohibits

the concurrent generation of multiple output streams, and can

cause extensive buffering of input streams. This is not a

serious flaw for experimental use of our language, but it would

be a severe restriction in a full-scale commercial product.

6



The problem is that functional languages do not directly
control the sequence of input operations or the sequence of
expression evaluations. The compiler and run-time system handle

these "details." The standard technique, which is called demand-

driven or lazy evaluation, is to read input and evaluate results
based on demand for output. This concentrates all processing on
generating the next output value. In programs that share a data
steam between two or more functions, however, this technique
insists on evaluating one function completely before it starts on
the next. In the meantime, while the other functions that share
the stream are suspended, the entire stream must be stored in
memory. This can require more memory than is available, which
could cause the program to fail without generating any output at
all.

Our solution to this problem is a variation of lazy evalua-
tion, which we call "just-in-time evaluation." The concept
behind this technique is to evaluate any pair of functions that
share a stream in parallel, so that the stream is consumed
sequentially and does not have to be stored. In a multiprocessor

environment, two such functions could be scheduled so that they
consume their common input at the same rate. The effect is

similar to the just-in-time scheduling techniques used in indus-

try to facilitate work flow and minimize inventories (i.e.,
storage). We have completed the detailed design of a scheme that
simulates the parallel evaluation of stream-sharing functions in
our uniprocessor environment. Its incorporation into the Ernest

run-time system, however, has been deferred to Phase III.

Data Flow Diagram Editor

The f irst major piece of new work completed in the second
*half of the project was the development of a data flow diagram

editor called Van (deGraph Generator). The concept of operations
for Van is to allow programmers to specify functions by creating
and manipulating data flow diagrams interactively on software

7
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development workstations. The ultimate purpose of the editor is
to create a data flow programming environment in which diagrams
can be compiled and run like ordinary programs.

Van appears to directly manipulate the diagram displayed on
the user's screen. In fact, however, it manipulates a set of

internal tables similar to those used in the simple drawing
program described earlier. The image displayed on the screen is
a projection of the data in these tables. The editing operations
supported include:

(1) Adding, deleting, and moving diagram components using the
mouse;

4(2) Adding, deleting, and modifying diagram nomenclature such as
component identifiers and comments; and

(3) Retrieving diagrams to be displayed, edited, or printed, and
saving them after they have been created or modified.

Complete descriptions of the editing commands are given in the
Van User's Guide in Annex B.

Data flow diagrams capture almost all the information neces-

sary to compile them into executable code. An example of an item
that is not represented, though, is the order of function argu-
me nts. There is no concept in data flow diagrams that flows
enter a process in any particular order. There is no way, for

instance, to distinguish between the data flow diagrams for the
operations *a divided by b" and "b divided by a." Of course,
this is essential information for converting data flow diagrams
into executable code. An additional service provided by the

editor, therefore, is to collect and record this information and
*allow the user to change it if necessary.

F4

Van was designed to handle only small diagrams that can be
drawn on a single screen. Realistic programs are much larger

than this and require multiple levels of definitions. Van,
therefore, creates tree structures of single-screen diagrams and

8
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provides "zoom-in" and "zoom-out" operations, which allow users

to probe down into process definitions or to take a step back and

observe the program from a broader perspective.

With Van, we followed our standard method of building a

rough version of the program and then distributing it within the

company for evaluation. In this case we had several members of

our human factors staff critique Van's user interface. Th ey

identified a number of problems (which were not obvious until

they showed them to us) and suggested several improvements. All1

of their suggestions were accepted and have been incorporated in

the final release of Van.

Data Flow Diagram Compiler

The second major development in this part of the project was

a compiler that translates data flow diagrams into executable

code. Current software development techniques that use data flow

diagrams for design require a manual conversion of the non-

procedural diagrams into procedural programs. The disparity

between the procedural and non-procedural views of the problem,

however, makes this conversion a difficult, time-consuming, and

error-prone task. Our solution is to interpret the diagrams as

functional expressions and eliminate the conversion to procedural

co de.

The front end of our compiler takes the tabular descriptions

of data flow diagrams -created by the editor and constructs
equivalent abstract syntax trees. We then use the second pass of

the Ernest compiler to generate executable object code. The

configuration of the data flow diagram compiler is shown in

*%.Figure 2. This arrangement will also accommodate the inter-
mediate type-checking pass when it is completed.

The construction of abstract syntax t16rees is relatively

~ : straightforward if the data flow diagrams represent pure f unc-

9
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Figure 2. Data Flow Diagram Compiler Configuration

tions. The data flow tables contain all the required structural
information in the form of a connectivity matrix. The interface

and process tables contain the names of all the parameters and
functions referenced. The compiler picks out the formal para-

meters for the function being defined and builds a parse tree by
tracing the structure of the expression represented by the con-

nectivity data.

The only serious difficulties we have found are in compiling
data flow diagrams that contain data storage components. Data
stores are the only history-dependent components in an otherwise

completely side-effect-free technique for specifying computa-

tions. They introduce the possibility of unpredictable and non-
reproducible program behavior, because there is no way to control
the order of updates or references to the stored data. Since

10



functional programs are free of side effects, their behavior is

always reproducible (even if incorrect). Hence, we have had to

restrict the use of data stores to a well-controlled set of

f unction-f orming operations, namely: "generate", "reduce", and
"scan,.

Appl ication Programs

To evaluate the utility of functional programming in practi-

cal applications, we developed three programs that are signifi-
cantly larger and more complex than the simple examples we used

earlier to test and demonstrate Ernest. Our source for these
programs was from company software development projects (includ-

ing our own), where we have used Ernest for design and rapid
prototyping. In this section we briefly summarize each of these

pr oj ects. More complete reports are included in Annex C.

The f irst (and largest) of these projects was to develop an

interactive tool to analyze the effects of automating job activi-
ties on personnel and operations at NASA ground control centers.

This analysis is valuable because automating job activities does
4 not always have a positive effect on personnel and overall system

performance. The program we developed allows a user to investi-
gate a hierarchical model of the characteristics of functions and

Stasks associated with control center operations. The user can

display data at any level in the model and can experiment with

changes in work activities to determine the expected effects on
personnel and system performance. This program consists of

approximately 1000 lines of Ernest source code for function
* definitions and approximately 700 lines for the definition of the

model data structure.

The second project was to prototype the type checking

algorithms that we will use in extending the Ernest compiler.
Ernest does not require the programmer to specify any type infor-

mation in function definitions. The program we developed derives



the most general interpretation of a function's domain and range

directly from its defining expression. A key part of the type
checker is a unification algorithm similar to those used in
interpreters for logic programming languages. The type checker
often produces more general and more useful functions than the
programmer would have specified. The prototype type checker
consists of approximately 400 lines of Ernest source code.

The third project, which is not yet complete, is developing
an expert system to support space science research. This work is
part of a NASA Phase I SBIR project to evaluate the applicability
of expert system techniques in space research. The knowledge to

be represented in this system includes the relationship of
features in remote-sensed data to the solution of specific
scientific problems. This knowledge will be applied to selecting
archived data and screening new data for scientific investiga-
tions. The inference engine for this expert system consists of
approximately 350 lines of Ernest souce code. The scientific

knowledge base and inference rules have not yet been developed.

We have recently started a fourth project to implement a
collection of signal processing algorithms in Ernest. These
algorithms will include Kalman filtering, fast Fourier trans-
forms, and non-linear and adaptive filtering.

Ism
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3. PHASE-III STRATEGY

Our strategy for Phase III has two major thrusts. The first
66 is to develop and market a line of commercial functional program-

S ming products based on the prototypes we have developed in this

pr oject. The second is to attract further research and develop-
ment support to investigate spin-off ideas that have come out of
our Phase-I and Phase-II work.

Comuercia]. Product Plans

Our first product goal is to market a functional programming

*discoveryn kit which will include production versions of our
Ernest compiler and run-time system. Our target market segment

comprises computer scientists and software engineers who need to

maintain (i.e., broaden) their professional skills. The program-

ming languages we have to compete with in this market include,
primarily, Prolog and SmallTalk. However, Ernest will be a

unique entry because there are no other functional languages on
the market.

Each discovery kit will include a tutorial on functional

programming, an Ernest User's Guide, and a diskette containing
the compiler, run-time system, and example programs. The first
offering will be for IBM-PC and compatible microcomputer systems.
We will handle initial distribution ourselves until sales can

sustain additional distribution channels.

Second-generation products will include higher-performance

versions of the Ernest compiler and run-time system and versions
for other computer systems such as DEC VAX's, Sun workstations,

and Apple Macintoshes. We will also introduce production ver-
sions of our data flow programming tools.

13



Ernest and Van will be promoted through new product an-

nouncements, news releases, and limitted but well-focused adver-

tising. We have collected readership prof iles and advertising

information from the leading professional journals and popular
microcomputer magazines. We will register product announcements

with all of these publications and will advertise in those that

reach the largest number of prospective customers. We also plan

to purchase mailing lists from these publishers for direct mail

advertising.

Further Research and Development

Research projects frequently raise more questions than they

answer. In our case we found a number of interesting ideas that

we think are worth further investigation. For example, we

observed in Phase I that Ada's a.gD.r.±g facilities could be used

to define function-forming operations [91. (These operations are

an essential component of functional programming languages.) We
also observed that Ada's overloading mechanism provides another

form of function generalization found in functional languages.
We would like to investigate these characteristics further to

determine how Ada might be extended to support functional program

specif ications. Another approach is to see if we can marry Ada

and Ernest and gain the advantages of the special features of

both languages.

Multiprocessor computer architecture is another area that we

*would like to investigate further. Machines with literally thou-

sands of processors have already been built using conventional

*hardware technology. No conventional programming languages,

however, are able to support software development for these rq

4, machines. On the other hand, functional languages offer ideal *

characteristics for highly parallel execution. They provide no

mechanism for specifying sequential operations and they are free

of side effects. This allows subexpressions to be evaluated

freely in parallel.

14



0 II

Previous approaches to multiporcessor architecture have been

almost entirely hardware driven, with little or no thought given

. to the software required to solve application problems. The

result has been a succession of incredibly powerful machines that

nobody can program.

We are addressing the multiprocessor design problem with an

entirely different approach; namely, by developing the software

f irst. Ernest's run-time system emulates an abstract non-von

Neumann machine that executes the object code produced by the

compiler. Our multiprocessor architecture concept is to build a

machine that can execute our object ccJe directly.

1
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PRE FACE
--- --- - -

This manual is a guide to a functional programming language
called Ernest. Ernest is intended to be a general purpose lan-
guage. That is, we have not tried to focus on any particular
application area or guess howv people will use it.

This manual is not intended to be a tutorial on functional
programming. The example programs presented illustrate many of
the basic concepts and we hope they provide sufficient guidance
for the diligent reader. A more comprehensive tutorial is in
preparation.

Both the language and its implementation will continue to
ev ol ve. The primary reason for distributing the present release
of this package is to introduce the concepts of functional pro-
gramming and to determine the product's readiness for commercial
release.

We invite your comments. Once you have had a chance to try
out our language, we would like to know how you think we could
improve it. That includes functional programming in general,
Ernest in particular, the compiler and interpreter, and this
user's guide. We will attempt to incorporate all viable sugges-
tions as we continue to develop this product.

Development Status

The compiler and run-time interpreter were developed as part
of the prototype implementation phase of a Small Business Innova-
tive Research (SBIR) project sponsored by the US Navy, Office of
Naval Research. This software is written in ISO Standard Pascal

-except for the dynamic storage management code -- and runs on
IBM-PCs and compatible machines. The programs require at least

'~ '..,one disk drive and 128K of memory.

* ~ The following features are currently supported:

Integer Arithmetic +" .,U* Nmod)

Logical Operations ("0", ""
Relational Operations #I" "" >=", etc.)

Sequence Operations (head, tail, :,")

Boolean, Character, Integer, and String Data

-~ -A~~Function-Forming Operations
Separate Compilation

Type checking, real aihecgraphics primitives, and
file 1/O are on the list of things to be added.

v



Distribution Package

The current distribution package consists of this manual and
a single 360KB diskette. The diskette contains the following
files:

OLIVERI.EXE GCD. FUN GCD.HBC

OLIVER1.TBL RANDOM.FUN RANDOM.HBC

OL IVER2.EXE PRIMES. FUN PRIMES. HBC

OLIVER2.TBL LENGTH. FU N LENGTH. HBC

SHERBERT.EXE REVERSE. FUN REVERSE. HBC

FU NGO. BAT WORDCNT. FUN WORDCNT. HBC

SORT. FUN SORT. HBC

The files in the first column contain the compiler, the run-
time interpreter, and a convenient batch command file for compil-
ing and executing programs. Their operation is described in
Appendix D. The ".FUN" files contain the example functional
programs discussed in Section 3. The ".HBC" files contain the
compiled object code for these programs.

Manual Organization

The material presented in this manual is organized in four
major sections. In the first section we present an overview of
functional programming, which introduces some of the general
concepts and includes some background on the development of the
f unct i onal appr oa ch.

The second section presents the rules for formulating pro-
grams in Ernest. This includes discussions of arithmetic and
logical expressions; sequences, streams, and strings; applicative
function definitions; and function-forming operations.

In the third section we present a series of example func-
tional programs, which include numerical and non-numerical appli-
ca ti ons.

The fourth section presents a brief set of guidelines which
we hope will help new users to develop functional programs.

In addition to these major sections, there are five M ,
appendices which include a BNF grammar for Ernest's syntax, a
list of predefined library functions, definitions of built-in
function-forming operations, directions for compiling and running
programs, and a compendium of error messages and their possible
cause s.

Reg Meeson
Lanham, MD

July 1986
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1. OVERVIEW OF FUNCTIONAL PROGRAMMING

Ernest is a programming language that supports a very high
level, non-procedural approach to software specification. Ernest
provides facilities for defining simple functions, plus a set of
powerful function-forming operations for constructing more com-
plex functions and complete programs. Ernest operates entirely
with functions and does not support the definition of step-by-
step procedures.

This approach encourages definition of reusable components.
In fact, program components can easily be parameterized to create
general-purpose components that can be tailored to specific
applications when needed. Reliability and reusability are
further enhanced by the fact that functions have no side-effects
and, hence, can cause no hidden changes (i.e., surprises) in the
state of a computation.

Background

In his 1977 Turing Award Lecture [11, John Backus introduced
some of the radically new ideas of functional programming. He
presented two very clear cases against conventional programming
techniques. First, he argued that it is extremely difficult to
reason about the mathematical and logical properties of con-
ventional programs. This is because conventional languages
typically do not follow simple laws of algebraic equivalence or
transf ormation. For example, identical code segments may produce
very different results when executed at different times or in
different parts of a program. It becomes very difficult, there-
fore, to build larger programs f rom smaller components because
fundamental principles such as substitution cannot be relied
upon.

Backus's second point was that the conventional concept of
controlling a machine's actions is completely out of keeping with
modern developments in highly parallel non-von Neumann computer
architecture. The step-by-step control imposed by conventional
programs can easily thwart the use of available parallel ism in
these advanced machines. At best, extra compile-time analysis is

~: required to determine when sequential commands can be performed
in parallel.

In a 1979 paper [21, David Turner described a new imple-
mentation technique for functional languages based on theoretical
work done in the 1930's by Haskell Curry [31. Curry developed
what he called the Combinatory Logic and showed it to be equiv-
alent to Church's Lambda Calculus. (The Lambda Calculus was
developed at about the same time and is well known as a theory of
computation and as the basis for LISP.) Turner showed that a
modern implementation of Curry's theory had several advantages

over existing techniques for interpreting functional programs. A

.0~j



Nnum be r of f unct ional l angua ge s, incl udi ng E rne st, hav e bee n
.1 implemented based on Turner's approach.

Genera]L Concepts

The basic components of functional programs are expressions
and functions. This contrasts with conventional languages where
the basic components are statements and procedures.

The use of expressions for arithmetic and logical computa-
tions is well established in conventional high-level programming
languages. Indeed, the introduction of expressions in high-level
languages has been a key factor in increasing software reliabili-
ty and programmer productivity. It is common practice to let
compilers handle low-level details such as register allocation,
temporary storage for intermediate results, and generating the
actual processing steps necessary to evaluate expressions.

At the next level above expressions, however, traditional
high-level languages, including Pascal and Ada, revert to step-
by-step statements or commands which operate on individual data
i tem s. The same difficulties that hinder assembly language
programming make larger Pascal and Ada programs time-consuming to
develop and difficult to modify.

Functional programming extends the use of expressions to
create and manipulate functions the way conventional languages
treat numeric and other data. The principal extension is the
addition of function-forming operations. Mathematicians call
these function-forming operations functionals, which is where we
derive the term functional programming. Function-forming opera-
tions replace conventional program structures such as assignment h

statements, conditional statements, loops, and procedure calls.

The correspondence between arithmetic and functional expres-
sions is illustrated in Figure 1, which shows the translation of
two expressions into procedural code. The first expression is a i -
simple arithmetic formula which represents a numeric value that
can be computed when values for A, B, and C are given. Th e
translation of this expression into assembler code is shown on
the right.

The second example is a functional expression which is
equivalent to the Pascal code shown on the right. The symbol "o"

represents function composition, which is probably the most
familiar function-forming operation. "Map" is another function-
forming operation which provides a common looping mechanism
similar to the Pascal "while" loop in this example. ("Map" is
further described in Section 2.)

The relative simplicitiy of the expressions on the left,
compared to the more complicated statements on the right can
easily be seen. Note that the arithmetic expression can be *

understood without simulating its evaluation. The same is true .

2
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A * B + SIN( C ) L 2,A
M 2,B
LA l,C
BALR 15,SIN
A 2,0

map( f o g ) read(x);
while not eof do begin

write( f(g(x)) );
read(x)
end

Figure 1. Expressions vs. Procedural Code

for functional expressions once the notation and function-forming
operations become familiar. This makes verifying the correctness
of functional programs much easier than checking step-by-step
procedural code.

The same kind of argument can be made for the relative ease
of modifying functional programs. Changes in arithmetic expres-
sions in conventional high-level languages can be made without
considering their impact on register allocation or storage for
intermediate results. Changes in functional programs can be made
without considering their impact on local variable declarations
or the restructuring of step-by-step operations. Hence, rather
sweeping changes can be made with high confidence when they are
required.

3
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This section introduces the syntax and features of Ernest.
The terminology and examples in this discussion assume the reader
is familiar with conventional high-level languages such as Pascal
and Ada. Ernest is presented in a bottom-up fashion, starting
with the simplest components and working up to complete programs.
A BNF grammar for Ernest is included in Appendix A.

Identifiers, Symbols, and Literals

Identifiers are used to designate constant values, func-
tions, and function parameters. They follow the usual rules of
beginning with a letter, which may be followed by additional
letters, digits, and underscores. Differences in upper- and
lower-case letters are ignored, so that "IEEE" and "ieee", for
example, represent the same object. Ernest reserves the follow-
ing identifiers for expression delimiters, built-in functions,
and predefined literal values:

and f al se mod true

define if 0 where

>.else input then undefined

The followiing special symbols are used in expressions:

The symbol "--" begins a comment, which then extends to the end
of the line. The functions of other symbols are described in the
sections below.

Conventional notation is used for literal integer and string
val ue s. Single quotes (apostrophles) surround strings. Literal
values f or sequences and tuples are enclosed in angle brackets

* .("<" and U'>") and separated by commas. An example tuple value
is:

< 'Ernest' , <'July' ,1986>, true >

Arithmetic and Logical Expressions

* 5/.Every attempt has been made to make Ernest's arithmetic and
logical expressions as "ordinary" as possible, so that expres-
sions actually mean what they intuitively appear to mean. The
precedence of operators, in decreasing order, by category, is
shown in Figure 2. As always, parentheses can be used to over-



ride the precedence of operators.

Function applications are also ordinary looking. They con-
sist of a function name followed by arguments in parentheses and
separated by commas, as in

gcd( 123, 456

Conditional Expressions

Ernest supports conditional processing in the form of if-
then-else expressions similar to those in Algol. (Somehow these
useful expressions disappeared in Pascal and Ada.) They have the
form:

if condition then resultl else result_2

- Arithmetic negation (unary prefix)
~ Logical complement (not)

* Multiplication (binary infix)

/ Division
mod Modulo (remainder)

+ Addition
- Subtraction

< Less than
<= Less than or equal
= Equal
/= Not equal
> Greater than
>= Greater than or equal

& Logical conjunction (and)

I Logical disjunction (or)

Sequence construction (cons)
Sequence concatenation

Figure 2. Precedence of Operators
----- --------------------------------------------------------------------
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The "condition" can be any Boolean expression; "result_l"
and "result_2" can be arbitrary expressions. The value of
"result_l" is returned if the condition is true, and the value of
"result_2" is returned if the condition is false. Expressions
must always be given for both "then" and "else" results in a
conditional expression. An example conditional expression is:

if x >= 0 then x else -x

Sequences, Streams, Strings, and Tuples

Sequences, streams, strings, and tuples are all almost the
same things. They are all ordered collections of elements. The
terms "sequence" and "stream" (and sometimes "list") are used
interchangeably to indicate collections of objects of the same
type. Strings are sequences of characters, and are so common
they have their own syntax for literal values. Tuples are
collections of objects of mixed type. Sequences and tuples are
usually thought of as finite objects, whereas streams (e.g., I/O
streams) are usually thought of as infinite (or at least very
long) objects. Ernest makes no distinction -- except that
infinite streams can not be sorted or reversed, etc., because
these operations require access to all the components of the
sequence. If processing an infinite stream requires access to
only a finite segment at any time, Ernest can handle it quite
easily.

Primitive operations on sequences include "head", "tail",S "a" and ":". "Head" is the function that returns the first

element of a sequence. "Tail" returns the sequence that remains
after removing the head. The infix operator ":" (pronounced
"cons") constructs a new sequence with its left-hand argument at
the head and its right-hand argument for a tail. The infix
operator "'" concatenates two sequences. These operations have
the following properties: ("<>" represents the empty sequence)

head( <> ) = undefined -- (run-time error)
tail( <> ) = undefined -- (run-time error)

head( x:t ) = x

tail( x:t =

head( s~t ) = if s=<> then head(t) else head(s)

tail( s^t ) = if s=<> then tail(t) else tail(s)^t

Literal values for sequences and tuples have the following
definitions. Note that ":" is right associative, as indicated by
the parentheses.

<x> x <>

< x, y, z > x • y : z : <>
= x : (y : (z <>

7
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Function Def initions

There are two forms of function definition in Ernest: con-
ventional definitions which describe a function in terms of
operations on a set of formal parameters, and function-level
definitions which construct functions using function-forming
operations. The basic form of a conventional definition is:

function name ( parameterlist ) = expression

where "function-name" is an identifier, "parameter_ list" is a
list of parameters separated by commas, and "expression" is an
arbitrary Ernest expression. For example, the absolute value
function can be defined as

abs(x) = if x>=O then x else -x

which shows how to test a hypothetical input value (represented
by x) and prepare the result.

Functions may be recursive. Recursion, however, is not the
only (nor the best) looping mechanism in Ernest. Alternative
techniques using function-forming operations are described below.

Subordinate Definitions. Complex functions can often be

simplified by introducing local supporting functions to handle
-p-- lower-level details and by defining local "variables" for common

subexpressions. (Variables in functional programs are not
storage locations, they are merely identifiers for expressions.)
Ernest provides a "where" clause for defining local functions and
variables within a function definition. The complete form for
function definitions is

function name ( parameterlist ) = expression

where definition 1

and definition_2

and definition_ n

"".. "Where" and "and" clauses are optional. The following -.
example shows the use of a "where" clause to define a local
function to help in generating a stream of pseudo-random numbers.

random(n) = n : random( next(n) )
v. where next(n) = (31*n + 378) mod 1013

This function generates an infinite sequence of numbers that

range between 0 and 1012. The parameter "n" serves as the
initial seed for the random sequence. Successive values are
produced by the function "next" which computes a simple product-
remainder formula.

8
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Subordinate functions may be mutually recursive and may
invoke the function they help define.

Nested Definitions. "Where" clauses may be nested. This
mechanism is required for structuring large programs. However,
it introduces two minor complications. The first is that local
functions and variables may reuse identifiers that have already
been declared. The search for the definition of an identifier
that appears in an expression proceeds as follows:

1. Look for it as the name of a subordinate function or
variable;

2. If that fails, look for it as a parameter of the current
function;

3. Otherwise, it must be defined at a higher level, so move
up to the next level and repeat the search;

4. End the search when you have looked through the lists of
predefined values and built-in operations given in
Appendix C.

One of the consequences of these rules is that subordinate
functions may be mutually recursive.

The second complication in nested defiritions is due to the
ambiguity as to which "where" the "and" clause belongs in the two
possible patterns below.

where f(x) = ... where f(x) =

where g(y) = ... where g(y) .

and h(z) = ... and h(z) = ...

Ernest ignors the indentation and assumes the left-hand
interpretation; i.e., that "g" and "h" support the definition of

f ". To get the right-hand interpretation, Ernest allows a
nested "where" clause to be terminated by a semicolon, as shown
bel ow .

where f(x) =

where g(y) = ... ; -- ends definition of "f"

and h(z) = ...

Patterns. When functions take sequences or tuples as argu-
ments, it is often desirable to name the components of these
structures so they can be used in the defining expressions. The

9
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following patterns for structured parameters are recognized:

parm- l : parm2 -- for non-empty sequences, and

< parameter_list > -- for fixed-length tuples

"Parm_ 1" and "parm_2" are identifiers or patterns and
"parm_list" is a list of identifiers or patterns separated by
commas. An example use of this is in the definition of a func-
tion to compute the magnitude of vectors represented by <x,y>
coordinate pairs.

magnitude( <x,y> ) = sqrt( x*x + y*y

Patterns can also be used in "where" clauses to define
structured variables. A common use of this is to define func-
tions on sequences that first test for the empty sequence and
then, on non-empty sequences, operate on the head and tail com-

.. ponents. An example of this is:

sum(s) = if s=<> then 0 else x + sum(t)

where x:t = s

Here, "x" and "t" serve as convenient names for "head(s)n
and "tail(s)", respectively. Note also that "x" and "t" are un-
defined if the sequence "s" is empty.

Function-Forming Operations
7., Function-forming operations are functions or expressions 

'1

that yield functions as results. Probably the most familiar
example of this type of operation is function composition, which
is a primitive operation in Ernest. The symbol "o" can be used '.

to compose functions as in the following definition:

safe-sqrt = sqrt o abs

This definition is equivalent toL

safe-sqrt(x) = sqrt( abs(x)

In fact, identical object code is generated for both definitions.
The difference between them is significant, however. The first
definition is a very simple example of a much more powerful form [
of programming which directly manipulates the component func-
tions. This is functional programming! The second definition is
weaker in the sense that it must introduce an extraneous "dummy"
parameter and describe the function in terms of operations on
da ta.

One of the big advantages of function-forming operations and
function-level expressions is that complex functions can often be

10
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defined more easily by such operations than by conventional
definitions. For instance, many functions which require recur-
sive conventional definitions can be constructed by functional
expressions without explicit use of recursion. Several examples
of such functions are presented below and in Section 3.

Partial Application. Any function with more than one argu-
ment can be considered a function-forming operation in Ernest.
The reason for this is that functions are evaluated by applying
them to one argument at a time, from left to right. The result
of consuming the first (left-most) argument is a new function
which is then applied to the next argument and so on, until all
the arguments are consumed.

The most common use of this language characteristic is to
"partially" apply a function to its first few arguments, leaving
later arguments uncommitted. A simple example of this is the
successor function "succ" which adds 1 to its argument:

succ = "+( 1

This function fixes one of the arguments for the addition opera-
tion by partial application and leaves the second argument to be
filled in later. An equivalent conventional definition for this
function is

succ( x ) = x + 1

Built-In Function-Forming Operations. The key to the
utility of partial application is the wide variety of functions
that can be constructed using a small number of function-forming
operations. Several of these operations that have found their
way into common use have been included as built-in functions in
Ernest. These functions are briefly described in Figure 3. The
figure shows several examples of iterative operations that can be
described without explicit use of recursion. Actually, the
recursion is hidden within the definitions of these function-
forming operations. For example, the definition of "map" in
Ernest is

map( f, s ) = if s=<> then <>

else f(x):map(f,t)

where x:t s

'7% Further examples of the use of these operations are present-
ed in Section 3.

i
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Generate: applies a function repeatedly to produce an infinite

sequence.

generate( f, x ) = < x, f(x), f(f(x)), ... >

An example where "generate" could be used is in

random = generate( next )

where next(m) = (31*m + 378) mod 1013

"Random" is a function which, when applied to an integer argu-
ment, produces an infinite sequence of pseudo-random numbers."Random" passes on its argument as the second argument to

"generate"; i.e.,

random( n ) = generate( next, n

Map: applies a function to each element of a sequence, producing
a new sequence.

map( f, <a,b,c,...> ) = (a),f(b),f(c),

"Mapping" is a common operation on streams. For example, a
function that converts all the upper-case letters in a character
stream to lower case is

lowercase = map( cvt

where cvt(ch) = if ch<'A' I ch>'Z' then ch
else chr(ord(ch)+32)

A_-
Filter: selects the elements of a sequence that satisfy a given
predicate. For example,

filter( odd, <3,8,5,2,7>

where odd(n) = n mod 2 = 1

produces the sequence <3,5,7>.

Figure 3. Ernest Function-Forming Operations

12
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Reduce: accumulates the result of applying a binary function
"between" sequence elements. For example,

reduce( "+0, 0, <a,b,c .. .> ) = 0+a+b+c+...

This is particularly useful as a function-forming operation. A
simple example is the following function definition:

sum = reduce( "+", 0 )

Construct: applies a sequence of functions to a common argument,
producing a tuple of results. An example of this is:

construct (<f,g,h...>,x) <f(x),g(x),h(x) ,.. >

This is such a useful function-forming operation it has been
given its own special syntax. Square brackets around a list of
functions have the following meaning:

f, g, h, ... I = construct( <f,g,h,...>

Scan: applies a binary function between sequence elements similar
to "reduce", but produces the sequence of all the partial
results. For example,

scan( "+", 0, <ab,c,...> ) =

< 0, 0+a, 0+a+b, 0+a+b+c, ... >

This function-forming operation is a very general one. In fact,
' both "map" and "reduce" can be defined in terms of it. For

example, the last element produced by "scan" is the value pro-
. -duced by "reduce." Hence,

reduce(fa) = last o scan(f,a)

where last(x:t) = if t=<> then x
else last(t)

"Last" returns the last element in a non-empty sequence; "o" is
the infix operator for function composition.

Figure 3. Ernest Function-Forming Operations (cont.)

13
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Input and Output

The standard input character stream (e.g., from the user's
keyboard) is available through the predefined stream named
"input." All output is directed to the standard output stream.

Program Structure

Complete programs are formed in Ernest by a series of (zero
or more) function definitions, followed by an expression. Func-
tions def ined at the program level are global in scope and may be
compiled separately. The reserved word "define" is used to
introduce each global function definition. The order of global
function definitions in a program is not significant. The form
of a complete program, therefore, is

define definition_ 1

9.:define def ini ti on m

e xpr ess ion
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3. EXAMPLE FUNCTIONAL PROGRAMS---------------------------------- -------------

This section presents a number of simple functional programs
which can be run on our system and are included on the distribu-
tion diskette. The examples range from simple numerical computa-

WV tions to string manipulation and sorting. A complete, executable
specification is given for each program.

At the beginning of each program we define general-purpose
utility functions and function-forming operations. Special-
purpose functions which are unique to the problem are specified
in local "wheren clauses. This style of programming is intended
to promote the development of reusable global function defini-
tions.

Numerical Programs

The following examples illustrate simple numerical computa-
tions. They include computing the greatest common divisor of two
numbers, generating random and prime numbers, and computing the
dot product of two vectors.

Greatest Common Divisor. The greatest common divisor of two
numbers is the largest value that divides both numbers evenly.
Euclid's algorithm for finding the "gcd" of two positive integers
is used in the first version of this program:

-- Compute the greatest common divisor

gcd( 105, 45

where gcd(a,b) = if a=b then a
else if a>b then gcd(a-b,b)
else gcd(a,b-a)

Pseudo-Randou Numbers. This program is virtually identical
to the example application of "generate" discussed on page 12.
"List" inserts commas and spaces between sequence elements for
readability.

define list(s) = '<' : if s=<> then <'>'>
4else head(s) : lst(tail(s))

where lst(s)= if s=<> then <'>'>

else ',' : ' ' : head(s)
Ist (tail(s))

15



-- Generate an infinite sequence of random numbers

list( random(123) )

where random = generate( next

where next(n) = (31*n + 378) mod 1013

Prime Numbers. The objective of this program is to generate
the sequence of all the prime numbers. Several functional
solutions to this problem have been described in the literature
(cf., [4] and [51) The one presented here produces the longest
sequence before running out of storage space.

define list(s) = '' : if s=<> then <'>'>
-I.. else head(s) : 1st(tail(s))

where Ist(s) = if s=<> then <'>'>
else',' : :head(s)

, : ist (tail (s))

-- Generate the sequence of all the prime numbers

list( primes )

where primes = 2 : genprimes(3)

where genprimes(n) = if divisible(n)
then genprimes(n+l)

else n : genprimes(n+2)

where divisible(n) = dvbl(n,primes)

where dvbl(n,x:t) = if n mod x = 0 then true
else if x*x > n then false
else dvbl(n,t)

NP"Genprimes" generates the sequence of prime numbers starting
M,. with the first prime that is greater than or equal to its argu-

ment. "Divisible" tests its argument to see if it is divisible
by any previously generated prime.

Vector Dot Product. The dot product of two vectors is
defined as the sum of the pairwise products of vector elements.

define pairwise(f,a,b) = if a=<> & b=<> then <>

pai rwise (f, an, bn)

where al:an = a and bl:bn = b

16 311
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define sum = reduce("+",O)

-- Compute the dot product of two vectors

-' dotprod( <1,2,3>, <4,5,6> )

where dotprod(a,b) = sum( pairwise("*",a,b)

"Pairwise" applies a function to the elements of two input
sequences, taking one value from each sequence at a time and
producing a new sequence as a result. That is,

pairwise( f, <al,a2,...>, <bl,b2,...> ) =

< f(al,bl), f(a2,b2), ... >

The definition of "sum" in terms of "reduce" was discussed
on page 13.

The heart of this program is the expression

sum( pairwise("*",a,b)

which reads almost exactly like the English definition of dot
product. This correspondence between definitions is another
reason why function-level programming is easier, faster, and more
reliable than conventional techniques.

Non-Numerical Programs

The following examples deal primarily with functions that
transform or rearrange sequences. They include finding the
length of a sequence, reversing and appending elements to
sequences, counting the number of words in text, and sorting.

Length. One of the simplest operations on sequences is to
find their length. A non-recursive definition can be formulated
using the function-forming operation "reduce":

define length = reduce (count,0)

where count(n,x) = n+l

. -.. " -- Find the length of a sequence

length( 'How now brown cow?'

17
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"Count" simply increments a counter for each element in the
input sequence.

Reverse and Append. The following functions reverse the
elements in a sequence and append a new element at the end of a
seq ue nce.

define list(s) = '<' : if s=<> then <'>'>
else head(s) : Ist (tail(s))

where ist(s) = if s=<> then <'>'>
else , ' : head(s)

1st (tail (s))

define reverse = reduce(snoc,<>)

where snoc(s,x) = x:s

define append(a,s) = s - <a>

-- Example sequence transformations (contrived)

list( < reverse('elloH') ,
'how are ' A append(,V, 'you) >

"Reverse" is defined using "reduce." The function "snoc" is
the same as "cons" with its arguments reversed. "Append" is
defined by forming a sequence containing the new element and
concatenating it to the end of the original sequence.

Word Count. The purpose of this program is to count the
number of words (i.e., contiguous sequence of non-blank char-
acters) in a text string.

To simplify this problem, we have split it into two basic ".
steps. First, the input string is transformed into a string
containing asterisks, dashes, and blanks. Asterisks replace the
first letters of words, dashes replace subsequent letters, and
blanks remain blanks. That is, the input is first transformed
into the string:

('How now brown cow?')

The second step is simply to count the asterisks.

define length = reduce (count,0)

where count(n,x) = n+l

lZZ
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-- Count the number of words in a text string

wordcount( 'How now brown cow?' )

where wordcount = length o filter (equal('*'))
o scan(markword,' ')

where markword(a,b) = if b=' ' then ' '
else if a=' ' then '*'
else '-

"Wordcount" is defined by the composition of three functions
which form a pipeline of sequence transformation. The first
transformation is the tricky one. All it requires, though, is
the observation that the beginning of a word can be distinguished
by looking between successive characters in a string. A new word
starts when a blank is followed by a non-blank. This is a per-
fect scenario for "scan"; and once it is recognized, the problem
is reduced to defining the function "markword."

The second transformation is to screen out all the asterisks
. so they can be counted. "Equal('*')" is a function which tests a

single character to see if it is an asterisk. Filtering with
this function produces a subsequence of the input containing all
the asterisks. The length of this subsequence, therefore, equals
the number of words in the original text string.

Sorting. No description of a programming language is com-
plete without a discussion of sorting. This program illustrates
the technique of inserting elements, one at a time, into a new
sequence in the desired order.

define list(s) = '0 : if s=<> then <'>'>
else head(s) : lst(tail(s))

where lst(s) = if s=<> then <'>'>
else '' : head(s)

lst(tail(s))

define sort(order) = reduce( insert(order), >

where insert(p,s,x) = if s=<> then <x>
else if p(x,y) then x:s
else head(s):insert(p,t,x)

where y:t = s

-- Sort a sequence of numbers in ascending order

list( sort (ascending,<3,-8,5,-2 7>)

19



where ascending(x,y) = x <= y

-- descending(x,y) = x >= y

"Insert" searches an already sorted sequence and inserts a
new element in its proper position. Ascending and descending
sorts can be accomplished by supplying the function used to
decide where an element belongs in the sorted sequence.

"Reduce" is used to orchestrate the insertion of each
element in the input sequence into a growing partial sequence of
sorted elements. When the final element has been inserted,
"reduce" returns the complete sorted sequence.

4..V
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.4% 4. PROGRAMIING IN ERNEST

In this section we offer some general guidelines which we
have found useful in developing functional programs. While we
f eel these guidelines are usef ul, we also think they can be
expanded and improved. Hence, we are not yet ready to promote
them as a complete methodology.

Top-Down Design

A top-down design approach is essential to breaking problems
into manageable pieces. Separate the problem's functional,
operational, and performance requirements. One of the problems
of conventional programming techniques is that function, perform-
ance, and operations issues are typically all jumbled together.
Functional programming requires focusing on the program's
function.

Identify the necessary program inputs and the required
program outputs, then characterize the program as a function from
inputs to outputs. If several outputs are to be produced,
consider each one to be the result of a separate function.

Functional programming offers more flexibility in partition-
*ing problems than conventional programming languages. One

example of this is illustrated in our solution of the word-count
problem on page 18. This program first transforms its entire
input stream, then f ilters out selected elements, and f inally
counts what is left. Conventional programming techniques would
probably not have led to this solution. However, it is easy to
understand, it is easily verified, and it is just as efficient as
more conventional solutions.

Bottom-Up Implementation

We recommend a constructive, bottom-up approach to writing
programs. Simple functions can be quickly built and tested
before being incorporated into larger ones. Functions at any
level can be easily combined to form more complex functions.
They can also be taken apart just as easily to correct errors and
to form new functions. Conventional programming languages do not
have this flexibility because of the changes in program variable
declarations and initialization that would be required to match
the changes in functional organization.

Data Flow Diagrams

We have found data flow diagrams [6] to be extremely helpfulup. in developing functional programs. They provide an intuitive
graphical representation of the construction of functions. Th e
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translation between data flow diagrams and program code is
relatively simple. This allows designs to be easily converted
into executable programs. Similarly, programs can be easily
converted into data flow diagrams for verification and documenta-
tion. We hope to provide tools to facilitate data flow program-
ming with the next release of our compiler.

4 Recursive Functions

While Ernest fully supports recursive functions, most pro-
grammers (except for those with an affinity for quiche) have
difficulty with recursion. Our recommendation is to avoid recur-
sion where ever possible and use function-forming operations
instead. Ernest's built-in function-forming operations cover a
wide range of applications. For example, "reduce" can be used to
sort numbers as well as sum them. As an added incentive, func-
tions constructed using the built-in operators usually run faster
than equivalent recursive functions.

Function-Forming Operations

Try to match Ernest's function-forming operations to the
structure of the problem. This may take some practice but it is
the key to building functional programs. If a function-forming
operation can be used, then proceed to develop the lower-level
functions required to construct the solution.

- We have found that developing new function-forming opera-
tions with the desired level of generality requires considerable .'
analysis and, hence, must be accorded more respect than develop-
ing ordinary functions. This is because an effective function-
forming operation must abstract a general functional structure
from the details of specific applications. An example of a well-
designed function-forming operation is "map." This operation can
be used in many different applications because it is cleanly
separated from the details of any individual program. Functional
programming provides powerful facilities for abstraction and,
when used correctly, yields simple solutions to complex problems.

. .
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Appendix A. ERNEST BNF GRAMMAR

In this appendix we present a BNF grammar for Ernest. Some
of the particular details of this meta-notation are:

o Literal symbols and reserved words are shown in quotes,
such as 'define', 'U ),etc.

* o Square brackets enclose optional items; for example,

( Where_-Clause I

indicates that "where" clauses are optional.

" Braces enclose a repeated item, which may appear zero or

more times; for example,

{ I"S Parameter

indicates that a parameter list may have an arbitrary
number of parameters separated by commas.

" Vertical bars separate alternative items, as in

Identifier I Structure

which indicates that parameters may be either simple
identifiers or structures.

" The terms "Character", "Identifier", "Number", and
"String" represent primitive lexical groups which are not
defined in this grammar.

The axiom for the grammar productions is the non-terminal
"Program".

25



Program { 'define' Definition }
Expression [ Where_ Clause

Definition Identifier [ '(' Parameter List ')'

'=' Expression ( WhereClause ]

I Structure '=' Expression

ParameterList ::= Parameter { ',' Parameter }

Parameter Identifier I Structure

Structure Identifier { ':' Identifier }

I '<' Parameter_ List '>'

Expression ::= Simple-Expression
{ Infix-Operator Simple_ Expression

. 'if' Expression 'then' Expression
'else' Expression

Simple_Expression ::= Application I Character
I Construction I Identifier
I Number I String
I Tuple I '(' Expression ')' p.

Application :: Identifier '(' Argument List ')'

Argument List ::= Expression { '' Expression }

Construction '[' Argument_ List ']'

Tuple '<>' I '<' Argument List '>'

Where_ Clause 'where' Definition { 'and' Definition

26

'¢. ' _ 526



Appendix B. PREDEFINED FUNCTIONS

This appendix catalogs the reserved words, predefined values, and
predefined functions in Ernest.

Reserved Words

and -- separates subordinate definitions

div -- inf ix operator for integer division
else sprtspart of a conditional expression
if -- introduces a conditional expression
0oni operator for function composition
mod -- inf ix operator for integer remainder
then -- separates part of a conditional expression
where -- introduces subordinate definitions

Predef ined Values

false -- Boolean negative
input -- the input (keyboard) character stream
nil -- the empty sequence
true -- Boolean affirmative
undefined -- the value with no definition

Prefix Operators

* -- arithmetic negation
-logical complement (not)

"A Infix Operators

~ & -- logical conjunction (and)
* -- multiplication

+ -- addition
*~ ~. -- subtraction

/ -- division
-- not equal

* -- sequence construction (cons)
-less than
-- less than or equal

= -- equal
-greater than

>=--greater than or equal
-sequence concatenation

~ >.\div -- integer division
mod -- integer remainder
0 - function composition

I -- logical disjunction (or)

27
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Predefined Functions

add(x,y) -- addition (x+y)
chr(n) -- numeric code to character conversion
cons(x,s) -- sequence construction (x:s)
construct(s,x) -- function construction
eager(f,x) -- forces eager evaluation of x
equal(x,y) -- test for equal values
filter(p,s) -- subsequence extraction
generate(fa) -- sequence generation

-*- grtr(x,y) -- test for greater than (x>y)
grtreq(x,y) -- test for greater than or equal (x>=y)
head(s) -- first element of a sequence
less(x,y) -- test for less than (x<y)
lesseq(x,y) -- test for less than or equal (x<=y)
map(f,s) -- sequence mapping
mult(x,y) -- multiplication (x*y)
neg(x) -- numeric negative
not(x) -- logical negative
noteq(x,y) -- test for inequality (x/=y)
ord(c) -- character to numeric code conversion
or(x,y) -- logical disjunction (xly)
reduce(f,a,s) -- sequence reduction
scan(f,a,s) -- sequence scanning operation
sub(x,y) -- subtraction (x-y)
tail(s) -- sequence remainder

NN
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Appendix C. FUNCTION-FORMING OPERATIONS

In this appendix we present applicative definitions for the
built-in function-forming operations described in Section 2.6.
As is typical in interpreters, the built-in operations are much
faster than the equivalent functions described here. In fact,
functions defined using these building blocks are often faster
than recursive applicative functions.

Construct

define construct(s,x) = if s=<> then <>
else f(x) : construct(t,x)

where f:t = s

applies a tuple of functions to a common argument, producing the
tuple of results: < fl(x), f2(x), ...

Filter

define filter (p, s) = if s=<> then <>
else if p(x) then x:y
else y

where y = filter(p,t)

and x:t = s

selects the elements of a sequence that satisfy a given predi-
cate.

Generate

define generate(f,x) = x : generate(f,f(x))

applies a function repeatedly to produce the infinite sequence:
< x, f(x), f(f(x)), ...

Map

define map(f,s) = if s=<> then <>
else f(x) : map(f,t)

where x:t = s

applies a function to each element of a sequence, producing the

., sequence: < f(xl), f(x2), ...

29
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Reduce

define reduce(f,a,s) = if s=<> then a
else reduce(f,f(a,x) ,t)

where x :t =s

accumulates the result of applying a binary function "between"
sequence elements.

Scan

define scan(f,a,s) = a : if s=<> then <>
else scan(f,f(a,x),t)

where x:t = s

applies a binary function "between" sequence elements and pro-
duces a sequence of all the partial results.

'N
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Appendix D. COMPILER OPERATION

This appendix describes how to use Oliver, the compiler, and
Sherbert, the run-time interpreter, to compile and run functional
programs.

Oliver, the Compiler

Oliver translates high-level function specifications into a
low-level code which is understood by the run-time interpreter.
There are two parts to Oliver: Oliverl, which parses Ernest
source code and produces an intermediate abstract syntax tree,
and Oliver2, which processes the abstract syntax tree and gen-
erates low-level object code. The two commands necessary to
compile an Ernest program called "example" are:

- A> oliverl example.fun example.ast

A> oliver2 example.ast example.hbc

The file extension "fun" is self-explanatory; "ast" stands
for the abstract syntax tree; and "hbc" forms the initials of the
developer of the theory behind the low-level code, Haskel B.
Curry.

Both Oliverl and Oliver2 read an additional file called
OLIVERI.TBL and OLIVER2.TBL, respectively, which contains theirtranslation tables. These files must reside in the default disk
directory so the programs can find them.

Sherbert, the Interpreter

Sherbert reads and executes the low-level object code pro-
,:". duced by the compiler. The command necessary to run our example

functional program is:

A> sherbert example.hbc
Application programs can receive input from the keyboard.

Sherbert reads this data and passes it to the applicaton program-- through a predefined character string named "input." Examples of
such programs are given in Section 3. Keyboard input can be
terminated by typing a control-Z followed by a carriage return.
All of Sherbert's output presently goes to the user's screen.

The batch command file included on the distribution diskette
will compile a functional program and then execute the objectcode. It can be invoked by:

A> fungo example

31
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Appendix E. ERROR MESSAGES

In this appendix we catalog the error messages that may be
produced by our compiler and run-time interpreter. (At least
these are the ones we have seen!)

Oliver's Error Messages

The compiler generates error and warning messages when it
finds what it believes to be syntactically incorrect programs.
This happens when the parser, following the grammar, cannot find
a production to apply that will match the input. The actual
error may be the current symbol that cannot be matched or an
earlier error that led the parser to the wrong production.

In a few very simple cases, the compiler may try to correct
the problem itself and continue the translation. When this
occurs, a message such as the following is generated:

fline #} -- ")" inserted before {symboll
Often, the compiler will produce a more ominous error

message and then skip to the next convenient keyword or symbol
and attempt to continue processing. These messages look like:

{line #} -- {symbol} unexpectedly encountered.
skipping to {symbol) in line [line #1

If the compiler can not get itself synchronized with
recognizable input, it may give upwith a message such as:

[line #1 -- {symbol} found. Translation terminated.
or

[line #1 -- (symbol) unexpectedly encountered. Trans-
lation terminated.

This information is not in a very friendly form but it usually
provides enough of a clue to find obvious errors.

Sherbert's Error Messages

The runtime interpreter makes a number of checks while
loading object programs, during program execution, and during
garbage collection. Loading errors are usually caused by trying
to load source code instead of object code. One of the following
messages may be generated:

*** Loader -- error in number *
* Loader -- Unrecognized symbol {symbol) *

** Loader-- error in expression syntax *

33



Many execution errors stem from incorrect use of recursion
(which is a good reason to use function-forming operations!).
These messages include:

* Sherbert -- head applied to empty sequence *

* Sherbert-- tail applied to empty sequence *

* Sherbert -- forward cell on stack *

* Sherbert -- Unprintable expression on stack ***

* Sherbert -- stack overflow ***

Larger programs may consume more storage space than is
available. This will result in the following message during
garbage collection:

*** Sherbert -- survivor space exhausted * 4

Pascal Error Messages

As a final insult, it is possible for some errors to produce
messages from the Pascal run-time system. The most common of
these are caused by misspelling the program file name and by an
arithmetic overflow. These messages look like:

? Error: File not found in file example
Error Code 1032, Status 0002

PC = 0004: 109F; SS = 13BE, FP = 092D, SP 6D5A
and

? Error: signed math overflow
Error Code 2054

PC = 1346: 00B3; SS = 13BE, FP = 6F42, SP = 6F44

''I
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PREFACE

This manual is a guide to the use of a data flow diagram
programming system that contains an mouse-driven data flow
diagram editor, called Van, and a compiler that translates data
flow diagrams into executable code, called Vincent.

Van and Vincent were developed as part of a Small Business
Innovative Research (SBIR) project sponsored by the U.S. Navy,
Office of Naval Research.

Van and Vincent run on IBM PC's and compatible micro-
computers. Van currently requires a Hercules graphics board.
Van supports three kinds of mice (Mouse Systems, Summagraphics,
and Microsoft) and produces hardcopy drawings on Epson-style dot-
matrix printers. Vincent requires no special equipment and
produces portable run-time code.

We would appreciate your comments on both the content and
construction o" this manual and on the tool itself. We will
attempt to incorporate all viable suggestions as we continue to

.. develop and enhance this product.
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1.INTRODUCTION

This manual describes the operation of Van, a mouse-driven
editor with which you can interactively create and modify data
flow diagrams. van allows you to manipulate data flow diagrams

V on the screen, save and retrieve diagrams, and print hard copies
of the diagrams.

Van's data flow diagrams consist of the standard data flow
elements (processes, interfaces, data stores, and flows) with an
additional element which we call data flow diagram text. For a
further discussion of data flow diagram techniques and conven-ti ons, see Tom De Ma rco' s ASDxjj-Y.616.tin$~it
.g.~jt"D (Prentice-Hall, 1979).

Section 2 describes how to use Van. It includes basic
instructions on how to select commands and how to respond to
prompts.

Section 3 provides a detailed description of the action and
use of each editing command.

Section 4 demonstrates how to create data flow diagrams for
a simple program. The problem and the diagrams that specify the
solution are presented first. Then, an editing session that
would create these diagrams is illustrated in detail.

Data flow diagrams created using Van can be compiled into
executable code. Hence, you can program with data flow diagrams.
An explanation of how to compile and execute a data flow diagram

~ ... is given in Section 5. This section also includes a discussion
of the semantics of data flow diagrams that are essential for
compilation.
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2. USING VAN

Getting Started

Van resides in a file called "VAN.EXER and is activated by
the command line

A> van

. Van will first prompt you to indicate the type of mouse you
have. Once Van receives this information, the initial menu is
displayed with a blank screen so that the editing process can
begin.

You interact with Van by means of the mouse and the key-
board. Commands, data flow elements, and positions on the screen
are selected using the mouse. As you move the mouse, the posi-
tion of the crosshair cursor changes on the screen. If the mouse
does not move the cursor, then Van is expecting input from the
keyboard. The keyboard is used for entering and editing textual
information, such as file names and identifiers for data flow
elements.

Selecting Commands

To select a command from the menu, move the crosshair cursor
into the menu area. Each command is associated with a field that
encloses the command name. As you move the cursor into a command
field, the command will be highlighted. Then, pressing any
button on the mouse will invoke the highlighted command. The
command field will remain highlighted until the command is com-

- Apleted or cancelled. Figure 2-1 shows the position of the cursor
as a command is selected. The details of what each command does
are covered in the next section.

Selecting Locations and Elements

To select a location on the screen, move the crosshair
cursor to the desired point and press any button on the mouse.

To select an element on the screen, move the crosshair
cursor to that element and press any button on the mouse. For
processes and data stores, place the cursor anywhere within the
circle or box. To select an interface or a flow , you place the
cursor in the vicinity of the center of the interface label or

--. midpoint of the flow. By "in the vicinity" of a point we meanthat the crosshair cursor extends out to that point. Finally, to
select data flow diagram text on the screen, you can place the
cursor anywhere on the text.

3V VV V 1.:::1* " < '- .



Options: A"l ali[

message: $Slbot oosaand.
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Figure 2-1. Positioning the Cursor to Select the Fetch Command

Try not to place elements in the diagram too close together.
One reason for spacing out the elements is simply to make the
diagram easier to understand. Van may have difficulty selecting
the right element if elements overlap.

Editing Text

Entering and editing textual information, such as file names l
and identifiers on data flow elements, must be done from the
keyboard. Van recognizes all of the alpha-numeric keys (upper g qand lower case) in addition to the following special keys:

Backspace -- moves the cursor to the left one character
and deletes the character over it.

Back Tab -- moves the cursor to the beginning of theV
text.

Delete -- deletes the character over the cursor.
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Enter -- enters the text as it appears.

Escape -- enters the original, unmodified text.
Insert -- toggles text insertion mode.

Left Arrow -- moves the cursor to the left one character.
Right Arrw -- moves the cursor to the right one character.

Tab -- moves the cursor to the end of the text.

Van's Menu

An example of a Van menu is illustrated in Figure 2-2. The
menu is divided into three areas with the headings, "Editing",
"Options", and "Message.0 The "Editing" area displays the name

of the file which contains the current data flow diagram, the
word "Modified" if the diagram has been changed, the word

O , f 0ptions: A Clear Delete retch Label m~ove PrintQuIg t Savo Seqaneno Title oowin zoe-out

Messagre: Ueloot command. 
n

in er ac I pr s s 2tintefaceI

d ata Ste"n

. Figure 2-2. An Example Van Menu and Screen
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"Saving" when the diagram is being saved, and the insert mode

("Insert Ono or Insert Off") when you are editing text.

The "Options' area displays the list of available commands.
There are three different sets of available commands which
correspond to different stages in the editing process. The first
set is the list of Initial commands. This list appears in the
beginning of the editing session when the screen is blank. The
complete list of Van's commands is called the list of "Normal"
commands. Van displays the list of "Normal" commands when the
screen contains at least one data flow element. The third set is
the list of "Add" commands which appears when you select the
"Add" command from either of the other two lists. The three
lists of commands are given below:

Initial commands:
Add Fetch Quit

Normal commands:
Add Clear Delete Fetch Label Move Print
Quit Save Sequence Title Zoom-in Z oom-o ut

Add commands:
Addflow Addiface Addproc Addstore Addtext End

The "Message" area of the menu displays prompts and messages
for the user. The "Message" area is also where labels and data
flow diagram text are displayed for editing purposes.

9 4
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3. THE EDITING COMMANDS
--

This section provides a detailed guide to the action and use
of each editing command. In general, you can cancel a command
which first prompts for input from the mouse by moving the cursor
into the menu area and pressing any button on the mouse. Com-
mands which first prompt for input from the keyboard can be
cancelled by pressing the escape key, ESC. Prompts for a "yes"
or "no" will be followed by "(Y/n)" or "(y/N)," where the default
appears in upper case. You may respond by typing "Yo or "N" in
either upper or lower case.

Add -- Add a data flow element to the current diagram.

When you select the "Add" command, Van displays the "Add"
menu and enables you to select one of the following com-
mands:

Addflow -- Add a data flow.

When you select the "Addflow" command, Van displays the
pr ompt:

"Select the starting element for the flow"

in the message area of the menu. After you select the
source element for the flow, Van displays the prompt:

"Select the destination element for the flow."

After you select the destination element Van draws the arrow

and displays the prompt:

"Enter data flow name:"

for you to enter the name of the new data flow (which may be
blank).

This command can be cancelled at any time before Van draws
the arrow by moving the cursor into the menu area and pres-
sing any button on the mouse.

Addiface -- Add an interface.

.'. When you select the "Addiface" command, Van displays the

prompt:

.4.. "Select the location of the interface."

Once you select the location, Van displays the prompt

7



"Enter interface 
name:"

When you enter the name of the interface, Van centers it at

the location you selected.

*" This command can be cancelled before you select the location
by moving the cursor into the menu area and pressing any
button on the mouse.

Addproc -- Add a process.

When you select the Addproc command, Van prompts:

"Select the location of the process."

Once you select the location, Van draws a circle centered at

that point. Van then displays the prompt:

"Enter process name:"

When you enter the name, Van centers it in the circle. Van
then prompts:

"Enter source file name (filename.ext):'

This is where you enter the name of the file which contains
(or will contain) the data flow diagram that defines this
process. If there is no further definition then simply
enter a carriage return.

This command can be cancelled before you select the loca-

tion by moving the cursor into the menu area and pressing
any button on the mouse.

Addstore -- Add a data store.

When you select the Addstore command, Van prompts:

"Select the location of the store."

After you select the location, Van draws a data store symbol -.

centered at that point. Van then displays the prompt:

"Enter data store name:"

When you enter the name, Van centers it inside the data
store symbol.

This command can be cancelled before you select the location
by moving the cursor into the menu area and pressing anyo,
button on the mouse.

8



Addtext -- Add data flow diagram text.

When you select the Addtext command, Van prompts:

"Select the location for the beginning of the text."

Once you select the location, Van displays the prompt,

"Enter text:"

and writes the text beginning at the selected location.

This command can be cancelled before you select the location
by moving the cursor into the menu area and pressing any
button on the mouse.

Clear -- Clear the screen.

This command clears the screen so that a new data flow
diagram can be created. If the current diagram has been
modified when you select this command, Van will remind you
to save the diagram by displaying,

"Save the current diagram? (Y/n)"

If you do not want to save the diagram, you must respond by
typing "N". Otherwise, Van will prompt,

"Enter file name in which to save diagram (filename.ext):
[current f ilename]"

Van displays the file name for the current diagram in case
you want to edit it. Van will save the diagram, as direct-
ed, and clear the screen.

Delete -- Delete a data flow element from the current diagram.

When you select this command, Van prompts:

"Select element to delete."

When you have selected the element to delete, Van requests
you to confirm the deletion by displaying the prcmpt:

"Delete [element type]? (yIN)"

You must type a "Y" to delete the element. Otherwise, the
command is cancelled.

This command can also be cancelled before you select an
element by moving the cursor into the menu area and pressing
any button on the mouse.

5 '9



When you select the element to delete, if the cursor is not
close enough to the element Van will display the message:

"No element selected - try again"

4,!
End -- End the Add command.

Whenyouno longer want to add elements to the diagram, this
command will take you back to the menu with the list of
normal commands.

Fetch -- Retrieve a saved diagram.

When you select this command, Van prompts:

"Save the current diagram? (Y/n)"

to remind you to save the current diagram first. Unless you
type "N", the diagram will be saved. Van then displays the
pr om pt:

"Enter the name of the file to retrieve (filename.ext):'

If the file cannot be found in the current directory, Van
will display the message:

-. "Unable to find file. Check file name"

and cancel the command. Otherwise, Van will display the
message:

"Reading display file"

Van will then clear the screen, and draw the new data flow
diagram specified in the file. If the file does not contain
a diagram readable to Van, the message:

"Format error in display file. Command cancelled"

will be displayed.

Label -- Add or Edit a data flow element label.

This command is used to edit labels on data flow elements
such as data flows, interfaces, processes, data stores, and.
also to edit text. When you select this command, Vank
displays the prompt:

"Select element to label."

When the element is selected, Van prompts for the new label'

10
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with

"Enter label: (current label]"

and allows you to edit the current label. If the element
selected is a process, Van will also issue the following
prompt after you have entered the new label:

"Enter source filename (filename.ext): (current filename]"

so that you can edit this if necessary. The new label will
then replace the old one in the diagram. For processes, the
new f ile name will also be stored.

This command can be cancelled before you select the element
by moving the cursor into the menu area and pressing any
button on the mouse.

Move -- Move a data flow element.

When you select this command, Van displays the prompt:

"Select element to move."

If the element selected is an interface, process, data store
or text, Van displays the prompt:

"Select the new position for the [element type]."

The element type is displayed to help verify that the right
element was selected. When you select the new position, Van
redraws the diagram to reflect the change.

If the element selected is a data flow, Van issues the
prompt:

"Select the new starting element for the flow."

When the selection is made, Van prompts:

"Select the new destination element for the flow."

When the second selection is made, Van redraws the diagram.

This command can be cancelled before you select the new
position (in the case of moving a data flow, before you

~- r select the destination element) by moving the cursor into
the menu area and pressing any button on the mouse.

Print -- Print the current data flow diagram.

When you select this command, Van displays the prompt:

A. NJ



"Print the full diagram? (Y/n)

"Full" diagrams include extra information required for com-
pilation (see Section 4). If you do not want this informa-
tion to appear in the printed diagram, respond by typing an
"N". This will cause Van to display the prompt,

"Print the basic diagram? (Y/n)"

"Basic" diagrams do not show any of the extra compilation
information.

Van redraws the current data flow diagram to keep the
printed copy in proper proportion. When the printing iscompleted, Van restores the original image on the screen.

Quit -- Quit the editing session. Exit Van.

When you select this command, Van will ask you to save the
current diagram if it has been modified by issuing the
prampt:

"Save the current diagram? (Y/n)"

.You must type "N" to exit Van without saving the current
diagram. Otherwise, Van will save the diagram and exit to
the operating system.

Save -- Save the current data flow diagram.
When you select this command, Van displays the prompt.

"Enter file name in which to save diagram (filename.ext).,
9. [current filenamel"

Van displays the current file name so that you can edit it :
if you want to save the current diagram in a new file. If
you enter a carriage return without changing the file name,
Van will overwrite the original file.

Sequence -- Sequence the flows into a process. V

This command is used to specify the order of arguments for al
process by sequencing the incoming flows. When you select,-,
this command, Van displays the prompt:

"Select the process to sequence"

and waits for a selection. When the selection is made, Van
displays the prompt:

"Select the flows into this process in order." ','
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Select the flows into the process in the order which you
de si re. As you make the selections, Van appends the labels
on the flows with "([sequence number])." After you select
the last flow, cancel the selection process by moving the
cursor into the menu area and pressing any button on the
mouse. The Sequence command itself can be cancelled at any
time in the same manner.

Title -- Add or Edit the data flow diagram title.

When this command is selected, Van displays the prompt:

"Enter title: [current title]"

You can then edit the current title, if one exists, or
create a new title. Van centers the title at the top of
the working screen. Note that the title is not a data flow
element and therefore cannot be moved or deleted using the
"Move" or "Delete" commands. You can remove the title by
selecting the "Title" command and blanking out the field.

Zoom-in -- Move down one level in the diagram.

The Zoom-in command is used to travel down the tree
structure of the diagram. When you select this command, Van
saves the current diagram if it has been modified and
displays the pranpt:

"Select the process to zoom in on."

If the process you select has not had its source f ile name
specified, van will display the message,

"Process doesn't have a function id -- command cancelled."

If the process has a source f ile name but Van is unable to
locate the f ile, Van will display the message:

"Unable to find file. Check source f ile name"

and cancel the command. Otherwise, Van will read in the
~ ~. display file which represents the definition of that processN and display the message:

"Reading display file"

Van will then clear the scre--. and draw the new data flow
diagram specified in the file. If the f ile does not contain
a diagram that Van can read, tk.e message:

"Format error in display f ile. CaTmmand cancelled"

13
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will be displayed.

This command can be cancelled, before you select the process
to zoom in on, by moving the cursor into the menu area and
pressing any button on the mouse.

Zoom-out -- Move up one level in the diagram.

This command is used to travel up the tree structure of the
diagram. If the current diagram is the top-level diagram
when you select the Zoom-out command, Van will display the
message:

"At top level. You cannot zoomout"

and cancel the command. Otherwise, Van will save the
current diagram if it has been modified and display the
message:

"Reading display file"

Vanw ill then clear the screen and draw the parent diagram.
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4. A SAMPLE EDITING SESSION

In this section we demonstrate how Van is used to create
da ta flow diagrams for a simple function definition. First we
describe the example problem and its solution in the form of data
flow diagrams. The we illustrate in detail the sequence of
commands that generates these diagrams.

The Problem to be Solved

Consider the problem of averaging a sequence of integers.
To average a sequence, "s", of integers, you divide the sum of
the integers by the number of integers in the sequence. The data
ilow diagram which corresponds to this definition is shown in
Figure 4-1.

We now need to define the sum function. We use the Ernest
f unction-f orming operation "reduce." "Reduce" accumulates the
result of applying a binary function ("+") between elements in
the sequence, s. The initial value of the accumulated result (0
for addition) must also be supplied. The function "reduce (f)",
therefore, is the function that adds all the elements of "s" to
the initial value 0. Using this function, we can easily repre-
sent sum(s) by the data flow diagram shown in Figure 4-2.

'~.sum

coan-

Figure 4-.Dtafo.darmfo aerg )

4. is
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Figure 4-2. Data flow diagram for "sum(s)"

Similarly, we can represent "count(s)" with the diagram
shown in Figure 4-3. In this case, though, the accumulation
function, "incr", adds the value 1 for each element in "S"
instead of the values of the elements. That is,

C incr (a,x) = a + 1 -- for any element x

oount(z)

Figure 4-3. Data flow diagram for "count(s)"
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Drawing the Diagrams

Once Van is activated by the command line,

A> van

an introductory screen will appear. The introductory screen
prompts you for the type of mouse you will be using. Enter the
number which corresponds to your mouse.

VAN de GRAPH GENERATOR

Computer Technology Associates, Ine.

Please indicate the type of mouse ire use

Enter the rur, ber: I for a Mouse Systems Mouse
2 for a Summagraphics Mouse
3 for a Microsoft Mouse

,p
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Van now displays the initial menu with a blank screen. If
you want to the draw the diagram for average(s) first, select the
"Add" command from the initial menu.

Options--: r eh 44a t

INessage. S.Leot oo , na..
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When Van displays the "Add" menu, select "Addproc" to draw
the first process.

I H e s & I e : S e 1 0 o ¢ o o" M a n d .I

'19

Vt'

-

$* .

..

. -- ~ a.,

-? J



Van now prompts for the location of the process. When you
select the location, Van draws the circle and prompts you for the
name of the process. Key in the name of the process, "div".

., / Options: Udfklow AJdiltao*AA-a-pr € Addlstoq AA4text EnA

Nessage: Enter process name: diy

.1'
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When you press the Return key, Van puts the name of the
process in the circle and prompts for the source file name.

'I

Melssae: soure file name Cfilenamm.ext):

..-21
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Since "div" is a built in function, we do not need to define
it with a data flow diagram and can therefore answer the prompt
for a source file name by pressing Return. You can continue in
this manner until the three processes in the data flow diagramm for Paverage(s)" have been added to the diagram. Note that the
source file names for the processes "sum" and "count" can be
specified when the processes are added, if you know what files
they reside or will reside in, or later using the "Label" com-
mand.

id t ""g
options: Ajan'ow Aadliao* Ajdproo Adastore Addtext xa

!' Nj
Alv
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If You then want to add the interfaces for the diagram,
select the "Addiface" command. Van will prompt you to select the
location of the interface. Select the location for, say, the
input interface. Van then prompts for the name of the interface.

Optiens: Aa&tlow F1tao~ a-Uprao Ad&stove A&Atext Knd

Message: Entea. interface nams:

41 v
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After responding to the prompt by entering "s", Van will

draw the name "s" at the location and clear the prompt.

O~ i n: Adld lot w AAItd fao doo dJ POO astore A &Aext En dl

message:

SUP,

di

e (D
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The output interface, "average(s)", is entered in the same
manner.

To add the flow from the input interface "s" to the process
"sum", select the Addflow command. When Van prompts you for the
starting element, select the interface "s." When this is select-
ed, Van prompts you for the destination element.

! .messge : Sele ct the d s tina ion el opnt fo r the flow.

me sage 

Is"(Ad

I
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flIf, for example, you select the process "sum, Van draws the
flowandprompts for the name of the flow.

Nossago: Enter &at& t~ow nano.:

aiv average (S)

coumn t
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Since this flow has no label, you can respond by pressing
Return. This completes the Addflow command. The other flows in
the diagram are added in the same manner.

: Messare :

Sup

it. -

'¢ .'.-V
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If you want to clean up the diagram by allowing only one
fl1ow f rom th e input i nte rf ace "s"t End the Add command an d sel ect
the Move command. Once you select the Move command, Van prompts
you to select the element to be moved. Select one of the flows
originating at the interface "s."

?rtft
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When the flow is selected, Van promptsyou to select the new
source element. Select the other flow originating at the inter-
f ace "s."

MUR!Ng: Nel t iod

Options: Ad Ciear Delete Tetoh Label F Move P]/int
Glt SAVO Sequense Title Zoom-in T, 0o-t

Message: Selet the now starting eleenst top the flo.

29
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Van now prompts for the new destination element. Select the
process "countm. When this is selected, Van redraws the flow
with its new orientation, completing the Move command.

Wdit ing: HMiflda

Options: *da Cl eaa Delete Fetoh Label Move Print

Quit Save Seuenoe Title Zoon-in Zoom-oat
Messave:

aiv 4wo"96ls)

.3
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An additional cleanup item is to resolve ambiguities in the
diagram. One such ambiguity is whether the diagram representssum(s) divided by count(s) or count(s) divided by sum(s). Ofcourse, the former is what we want and the ambiguity can be
clarified by sequencing the flows into the process "div." Whenyou select the "Sequence" command, Van displays the prompt,"Select the process to sequence." Select the process "div."

Options: AAA Cle & Delete Fetob Label Novo Print
IQU Ot it Save Title z2oown ZOOM-out n

Mossawo:l Seloot the prooess to sewuenoe.

• . .... )
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After you select the process "div", Van prompts you to
select the flows into the process "diva in the order that you
desire. You first want to select the flow from the process "sum"
to the process "div."

Editing: Modif I V Options: Ad Cleam Delete Fotoh Labl ove Pi nt

quit Save S. enoe Title Zoo*-In Zoos-out

Message: Solet the flows into this piooess in oDeu'.

. *= *

SCe

A.5
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Then you want to select the flow from the process "countm to
the process 'div.1"

Optinssa: *Adec t)l near Dlelste.Ntb Lbl Mv rn
,o d 

oN rn

14 1Z10 -1

t aeT te Zo*I olSu

Nosg:$ta h nx lweeet
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Notice that as you select the flows, Van displays the
sequence number on the flow so that you can see the order you
have specified. Now that you have sequenced both flows, cancel
the command by moving the cursor into the menu area and pressing
any button on the mouse.

ANow that you have completed the data flow diagram for
"average(s)", you can use the "Clear" command to start on the
other two diagrams. The "Clear" command will remind you to save
the diagram before Van clears the screen. The diagrams for
"sum(s)" and "count(s)" are created in the same manner as dis-
cussed above.

.I
" ng: S)M MU

'zOptions: Add Cl ear, Delete otob Label1 Move Print
44L te Save Sequoense Title zoew-tn ,oeP-eat

-)£

-I-

U't'ngu su")

options. Ad
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Since you now know the f ile names for the diagrams of
"sum(s)" and "count (s)w, you want to specify them as source f ile

names in the diagram for maverage(s).' First, you need to fetch
the diagram for "average(s)". When you select the "Fetch"
command, Van reminds you to save the current diagram first if you
have not already done so. When the current diagram has been
saved, Van prompts for the name of the f ile to retrieve. Once
you specify the file name, Van clears the screen and displays the
diagram for "average(s)."

Editing: 
average. 

dtd

ptions: dd Cl ear~ DO 40-e1o Label Pleve Print

Gailt Save Socuenee Fitle Zeem-im Zo.-eut
Mnessage: Select oow'eand.

or A

36



Now select the "Label" command. Van prompts you to select
the element to label. Select the process "sum."

Me s sa ge Selset the elestent to lalel1.

J .
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Van then displays, *Enter label: sum." Since you do not
want to change the name of the process, respond by pressing
Return. Van will then display the prompt, "Enter source f ile
name (f ilename-ext):" for you to enter the source f ile name for
the diagram of "sum(s)."

11455WO: Zntosu source. ell* nasw ctlienano.oxt): sim.4ta

S SUM

j('S
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You can store the source file name for the diagram of
"count(s)" in a similar manner.

Now that both source file names have been specified, you can
travel from one diagram to another using the "Zoom-in" and "Zoom-
out* commands. For instance, if Van is currently displaying the
diagram for "average(s)", and you want to view or edit the
diagram for "sum(s)", select the wZoom-in' command. Van then
prompts, "Select the process to zoom in on."

N 05 "90: S le t t h. P rso es s to see n i n en.

op t i 

oo 
o t 

r n

Quit 

P'
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If You select the process "sum", for example, Van will
display the diagram that defines "sum(s)."

OOptiens: A&& Clear' Delete Tetoh Label Move Pr'int

2) auo("+O)SUR(S)

s
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You can print any of the three diagrams, with or without the
sequence numbers on flows, with the "Print' command and save the
diagrams for future use by selecting the "Save" command.
Finally, you exit Van by selecting the "Quitm command which will
return you to the operating system.
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5. EXECUTABLE DATA FLOW DIAGRAMS

In this section we describe how data flow diagrams created
using Van can be compiled into executable code. First we discuss
the problems of interpreting ambiguous data flow diagrams and the
solutions we have devised. Then we describe the procedures for
compiling and executing data flow programs.

Ambiguitites in Data Flow Diagrams

To compile data flow diagrams into executable code, the
diagrams must represent well-defined functions. Unfortunately,
data flow diagrams often contain ambiguitites that would prevent
their automatic translation.

One source of ambiguity is the order of inputs to a process.
For example, the diagram in Figure 5-1 could mean "a-b" or "b-a".
The data flow diagram compiler, not knowing the desired order of
inputs to the process, will arbitrarily order the arguments for
the subtraction. Hence, any time the order of arguments to a
function is important, you should use Van's Sequence command to
specify the required order.

A second source of ambiguity is that data flow diagrams can
describe processes whose results depend on the timing of input
and the speed of subprocess execution. This can occur when two
or more processes share a common data store as shown in Figure 5-
2. In this example, both Process_A and ProcessB can read and
update the shared store at any time, and can easily produce
different results with the same input data if process timing
changes. We solve this problem by not allowing data stores to be
shared. Fortunately, this does not restrict the specification of
programs that implement well-defined functions.

.7&,-I or b.-&

b

* Figure 5-1. Ambiguity in the Order of Arguments
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InputA A Ouctput.A

share&-stolin

Input- . Oqtpat..

Figure 5-2. Ambiguous Process with Shared Data Store

Representing conditional processes in a data flow diagram is
another source of ambiguity. The usual approach is to show
multiple output flows to indicate conditional data paths, zero or
more of which may be taken based on unstated criteria. Even when
the branching conditions are specified, the compiler can run into
difficulty trying to merge conditional flows back together. The
convention we use is illustrated in Figure 5-3. It consists of a
process labelled "if" which has three ordered inputs: the data
flow for the condition (a true or false value), the data flow for
the result if the condition is true, and the data flow for the
result if the condition is false. Thus, the value on the output
flow of the "if" process depends on whether the condition is true
or false.

oondi.t ion

t hen_express i on "i"

else-expression

Figure 5-3. Representation of Conditional Data Flows
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The current version of the data flow diagram compiler also
requires adherence to the following conventions:

o Each data flow diagram should have only one output inter-
face. This interface should be labelled with the function
name and its list of formal parameters. (The title on a
data flow diagram is ignored by the compiler and, hence,
cannot be used to identify the function being defined.)

o All data flow diagram text should correspond to Ernest where
clauses. That is, data flow diagram text should begin with
the keyword where followed by an Ernest definition.

o Built-in operators, which are listed below, should appear in
double quotes when used as process names.

.& -R +. ._. -/"

:" (cons) "(<=W M=

"">=" "" (concat)

"if od""I" (or) W-0 (not)

Compiling and Executing Data Flow Diagrams

The first step in compiling a data flow diagram is to derive
an abstract syntax tree for the expression represented by the
diagram. This is accomplished by a program called "Vincent." A
sample command, which will create the abstract syntax tree for
the function "average" is:

A> vincent average.dfd average.ast

The second step is to convert the abstract syntax tree into
the low-level code understood by the run-time interpreter. This
is accomplished by the second pass of the Ernest compiler,
Oliver2, with the command:

A> oliver2 average.ast average.hbc

Since each data flow diagram specifies only a single function,

this process must be repeated for each ".dfd" file.

4a The top-level diagram of a program must be handled slightly
differently, since it represents an expression rather than a
function definition. The translation process is exactly the
same. However, the low-level code for the main program must be
the last segment of code loaded by the run-time interpreter. To
ensure that this code appears at the end of the file, we do not
create a ".hbcm file for it. Instead, we use the file extension
".top", as in:

45
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A> vincent mainprog.dfd mainprog.ast

A> oliver2 mainprog.ast mainprog.top

All of the ".hbc" files and the ".top" file must then be
collected together into a single file for execution. The follow-
ing command combines all the ".hbc" files in the current direc-
tory and the .top" file into a single file called "mainprog":

A> copy *.hbc+mainprog.top mainprog

We can now run the program by issuing the command:

A> sherbert mainprog

.

k



VAN QUICK REFERENCE GUIDE

Add -- Add a data flow element to the current diagram.

Addflow -- Add a data flow.

Addiface -- Add an interface.

Addproc -- Add a process.

Addstore -- Add a data store.

Addtext -- Add data flow diagram text.

End -- End the Add command.

Clear -- Clear the screen.

Delete -- Delete a data flow element fran the current diagram.

Fetch-- Retrieve a saved diagram.

Label -- Add or Edit a data flow element label.

Move-- Move a data flow element.

Print -- Print the current data flow diagram.

Quit -- Quit the editing session. Exit Van.

Save -- Save the current data flow diagram.

Sequence -- Sequence the flows into a process.

Title -- Add or Edit the data flow diagram title.

Zoom-in-- Move down one level in the diagram.

Zoam-out-- Move up one level in the diagram.
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HUMAN FACTORS DESIGN EVALUATION TOOL

Reginald N. Meeson, Jr.
T. Patrick Gorman

Computer Technology Associates, Inc.
7501 Forbes Blvd., Suite 201

Lanham, MD 20706
301-464-5300

Abstract

A sizable application program (1700 lines) written entirely
in the functional programming language Ernest is described. The
application is an interactive tool for analyzing the effects of
automation on personnel at a NASA ground control center, and is
based on a human factors model of job activities. The functional

- organization of the program is discussed and several examples of
function definitions and data structures are presented. Ernest's
function-forming operations allowed us to abstract and partition
the problem in a logical and natural way. The techniques of
functional programming which have been illustrated in much
smaller programs worked equally well in this larger exercise.

Introduction

This paper describes an interactive tool designed to analyze
the effects of automating job activities on personnel and opera-
tions at a NASA ground control center. Changes in job activities
due to automation can have both positive and negative effects on
personnel and overall system performance. Hence, analysis of
such effects can be valuable to help guide system evolution and
to safeguard against having to correct for changes that impair
performance.

The analysis is based on a model of human factors attribute
associated with personnel functions and tasks that support groun
control system operations []. The model partitions systems int
the hierarchy of components outlined in Figure 1. Each componen
in this tree structure has a set of attributes. At the leaves o
the tree, the attributes are directly measurable, quantitativ.
characteristics of a human-computer interface. At other nodes ,
the attributes are derived from the attributes at lower levelf,
and are usually more qualitative in nature. At the root node'
therefore, the attributes represent an overall qualitativ#
assessment of the system's demand on personnel and its effects o,
personnel performance. The attributes at each level in the
hierarchy and their dependencies are shown in Figure 2.
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The Design Evaluation Tool allows a user to move around
within this model and display information about the hierarchical
structure, the values of attributes, and the contributions lower-
level nodes make to attributes at higher levels. In addition, a
user may experiment with changing attribute values at leaf nodes
to investigate the effects of changes in work activities on
personnel and system performance. Examples of the two principal
types of displays produced by the tool are shown in Figures 3 and
4.

The Program

The Design Evaluation Tool is implemented entirely in the
functional programming language Ernest [2]. The program consists
of approximately 1000 lines of function definitions, plus approx-
imately 700 lines of data structure definitions which form the
model of human factors attributes.

The top-level organization of the program has the tradition-
al input-process-output structure shown in Figure 5. The first
function, "makecodes", filters the user's keyboard entries and
passes a command code to the next stage for each user entry. The
process part, which contains the function "nextstate", imple-
ments a finite-state machine that produces a new state in
response to each input command code. On the output side, the
function "showstate" displays the current state on the user's
terminal screen.

Function: Monitor TDRSS Network Performance
.-

To exit. enter "C.

Tc proiceed, select ar, action from the list below:

1. Move to Task: Monitor Status Reports
c. Move to Task: Maintain Position Log
3. Move to Task: Monitot/Control GCMS
P. Display the Profile for this node.
R. Return to the previous screen.

Figure 3. Example Menu Node Display
-------------------------------------------------------------------------
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Profile for Task: Monitor Status Reports

0 10 20 30 40
A. Time (mins. ) ================m===: -=

B. Decision Making

C. Visual Perception

D. Auditory Perception

L L/M M M/H H

Demand: : is recommended; = is baseline; - is trial modification.

To exit, enter 'C. To return to previous screen, enter R.

To proceed, select an attribute for analysis or modification.

:V

Figure 4. Example Profile Node Display

----- - -- -- -- -- --\ ---- -- ---

input ,make -aco-A@s next-.s tate) 'how-.st. t ) output

cur,_s tate

Figure 5. Top-Level Program Organization
----------------------------------------------------------------------
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5. Data Structures. Before we say more about these functions
we must describe some of the data they operate on. For each of
the nodes in the model there is a menu node in the program
database. Each menu node contains a tag field indicating that it
is a menu, its name, a list of its offspring, a list of its
attributes, and a function that computes its attribute values

- when applied to its offspring. For example, the menu node for
the task "Monitor Status Reports" is:

MSRmenu = < 'M', 'Task: Monitor Status Reports',
offspring, attributes, taskattribs >

where offspring = < ('1',FAI-menu>, -- Fast Access Index
<'2',SDO menu>, -- Station Data Ops.
<'P',task.profile>,
<'0',nono msg> >

and attributes = task attribs (offspring)

Since the attribute function is the same for all tasks, the
function "task-attribs" is defined globally. In addition tosubordinate menu nodes, the offspring include a profile node and
a text node.

Prof ile nodes are not described in the model but are re-
quired in our finite-state machine paradigm to allow profiles of
attributes to be displayed. The definition of the task profile
node is:

J-. taskprofile = < 'P', 'Task Profile:', offspring >

where offspring = < 'A',taskAdetail>,
< ,B task B de tail>,
<'C' task C detail>,
<'?',nonomsg> >

Profile nodes have offspring which are detail nodes. Detail.
nodes allow us to display the contributions made by each sub-%-
ordinate node to a selected attribute.

The "state" of the finite-state machine part of our progran-'"is a list of the nodes that lead from the current node back up tc*
the root of the tree. For example, if the current node is th
profile node for the model function "Monitor TN Performance"
then the state would be represented by:

curstate = < func profile, -- function profile node
MTNP menu, -- Monitor TN Performance
TNC-menu, -- TDRSS Network Controller.
NCC menu > -- Network Control Center .',.
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Function Definitions. Space does not allow us to show every
detail of the program, so we will attempt to describe only a few
key functions that illustrate program construction using func-
tion-forming operations. All of these examples were taken
directly from the program and are compilable definitions.

The heart of this program is the finite-state machine shownin the center of Figure 5. Given the current state and an input
command code, the function "nextstate" produces a new state
value. That is,

new state = nextstate( cur state, cmdcode

We use the "scan" operator to construct the finite-statemachine. "Scan" is the function that produces the sequence of
all its partial results as it consumes its input. In this pro-
gram, the partial results are the individual state changesdirected by each input command code. Hence,

A, .1j state_ stream = scan( nextstate, init state, cmd stream

is a stream of state values starting with the initial state andcontaining every intermediate transition. The initial state is a
list containing only the root of the database tree structure.

The definition of "next_ state" does not use function-forming
operations, but it does show how the program state is manipulated
and how functions may return large data structures as results.

nextstate( curstate, cmd-code ) =
if cmd code = 'R'

then -- return to parent node
if parentstate = <> -- curstate = <root>

then cur-state
else parentstate

else if node_-type = I -- a menu node or
node_type = 'P' -- a profile nodethen -- add the selected offspring to the state

select, offspring (curnode, cmd code) : curstateelse if nodetype = 'T' ( -- a text node or
nodetype = D -- a detail node

then -- return to the parent node
pare nt. state

else if node-type = 'U' -- an update node
then -- produce an entirely new state
update- state (cur_ state, cmd, code)

S-- else -- error, replace node with error message
oopsmsg parent-state

where curnode parent.state = cur state

and node-type = head(cur-node)

and oopsmsg <IT', <'Oops! Unrecognized node in tree'> >

6



Selecting an offspring from the current node requires match-
ing the command code with an offspring node's selection key.
This function is defined by:

select_offspring( cur_node, cmdcode ) = newnode

where <key,new-node> = first(match, offspring)

and first(pred,seq) = head( filter(pred,seq)

and match (<key, node>) =
key = cmd_ code I -- key matches command code
key = '?' -- or the last element

and <type, offspring, name, attributes, attr_ func> = curnode

IN The first node that matches is at the head of the list of
all the nodes that match, which we produce using the "filter'
function-forming operation.

Since Ernest has no assignment statements, we cannot update
attribute values in place the way we can in conventional lan-
guages. Instead, we must produce a new state with appropriately
reconstructed nodes. (Assignment statements over-simplify the
drastic nature of global state transformations. In this program,
for example, the effects of attribute changes ripple all the way
up the tree structure. Hence, a simple assignment would leave

.- the program database in an inconsistent state.) Updating a menu
node consists of replacing its offspring and recomputing its
attribute values:

update menu( parent node, newchild ) -

< 'M', new_offspring, name, new-attribs, attrib-func >

where <type, offspring, name, attributes, attrib_ func>
= parent_ node

and newoffspring = replace(new_child,offspring)

and new attribs = attrib_ func(new offspring)

The function "replace" substitutes a new child in the list
of choices that make up a parent node's offspring. It is define
recursively by:

replace( new_ child, choices ) =
if choices = <> then 0
else if new-name = first_name

then -- insert the new child here
<key,new-child> : tern_choices

else -- keep the first child and replace the rest
firstchild : replace (new- child, rem-choices)

7 ,
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where <new_type,new- offspr,new- name, new_ attrs, new- func>
= newchild

and <key, <first_ type, f irst_ of fspr, f irst_ name,
firstattrsfirst_ func> > = first_choice

and first-choice : reinchoices = choices

At the bottom level of the tree, a new node with new trial
attribute values is constructed by the function "update-_trial."
This produces the first new menu node to be replaced in the tree
structure. All of this child's ancestors -- back to the root of

- the tree -- are in the program state. This leads to the follow-
ing definition:

,.uv update state( curState, cmd_ code ) =
*update_node : profile : newancestors

where updatenode : profile : first_menu : ancestors
= curstate

.: .: and newancestors = reverse ( reduce (build_ state,
<first new-menu>,
ancestors) )

and firstnew_menu = update trial(firstmenuattr_code,
-.. cmd code)

and <type,attr_ code> = updatenode

The function "build_ state" takes a list of updated children
and the next parent node in the tree structure, forms a new
parent node with the newest updated child substituted in its
offspring, and adds the new parent node to the list of updated

~ children.

buildstate( updated_children, parent ) =

new..parent : updated- children

C.. where newparent = update menu(parent, first child)

and first-child =head (updated_ children)

Applying "buildstate" successively to each ancestor in the
state using the reduction operator constructs a new updated state
-- but with the elements in reverse order. The function"reverse" rectifies this:

reverse = reduce( rev, <>

where rev(seq,elem) elem : seq

8



The states produced by onext-staten are passed along to the
output formatting function *show_ state", which is defined by:

showstate( cur-state ) =
screen( if nodetype = 'W' then -- it's a menu

show_menu (cur_ state)
else if nodetype = 'P' then -- it's a profile

show_ profile (cur- state)
else if node-type = 'D' then -- it's a detail

show_ detail (cur_ state)
else if nodetype = 'T' then -- it's text

show_text (fir st tnode)
else if node-type = 'U' then -- it's an update

show_ update (cur_ state)
else show_ text(error-msg) )

Each of the subordinate nshow_..." functions produces a
sequence of lines to be displayed, and "screen" centers these
lines vertically to present a clean display.

Finally, the program output is generated by mapping "show_-
state' across the sequence of states produced by the finite-state
machine:

map( show_state, state_seq

Concl usion

We have described a sizable application program (1700 lines)
which was written entirely in the functional programming language
Ernest. The success of this project was due to several factors.
Ernest allowed us to abstract and partition the problem in a
logical and natural way. Ernest's function-forming operations
and the absence of side effects allowed us to build and test
component functions independently and to combine them into larger
components with ease. The same techniques that we used in
developing smaller programs worked equally well in this larger
example. We also found that program bugs were quite easy to
isolate and repair, primarily because they were found early in
testing small components.
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Abstract

A prototype of the type-checking algorithm used in the
functional programming language Ernest is described. This
prototype was implemented in Ernest as part of an exercise to
evaluate the language. Since Ernest requires a minimum of type
declarations, type checking requires deriving a function's ty'pe
from its definition, as well au verifying that each application
is consistent. The type checker supports polymorphic functions
and derives the most general interpretation of each function's
type.

Introduction

The goal of type checking is to ensure that functions and
operators are applied only to arguments of the correct type. For
example, it is valid to add two numbers, but it is not meaningful
to add a boolean value to a string (or to another boolean value).
In this paper, we discuss the approach to type checking in the
functional programming language Ernest [1] and provide an over-
view of how our type checking algorithm works.

igMost conventional programming languages support type check-
igby requiring programmers to explicitly declare the types of

.',.all variables, procedures, and functions. This makes type check-
ing a simple process, since all the type checker has to do is
verify that the use of each variable is consistent with its
declaration.

The philosophy used in Ernest and in a number of other new
programming languages is that the type of function arguments and

6. returned values should be derived or inferred from the function's
def inition. Functions, therefore, do not require explicit type
declarations. (This philosophy extends to procedures and vari-

). >.ables in procedural languages.)



An important concept that arises in type systems is that of
polymorphism. A polymorphic function is one that can be executed
for arguments of different types, such as the following function
to compute the minimum of two values:

define min(x,y) = if x <= y then x else y

This function is polymorphic because it can take two arguments of
any type for which comparison is supported (e.g., integers or
strings). Thus, both of the following calls are valid:

min(a',) returns the value of the smaller character
-- (according to the ASCII collating sequence)

min(23,15) -- returns the value of the smaller integer

Most conventional programming languages fail to support poly-
morphism, although Ada [2] provides a restricted form through
"generic" objects and by woverloadingn function and procedure
definitions. Ada's approach, however, requires more, complicated
declarations rather than fewer, simpler ones.

Another important concept in type systems is the notion of
type equivalence. In Ernest, types are equivalent if they have

'. the same structure; that is, if they are the same basic type or
if they are built from equivalent components using the same
construction operations. Other languages such as Ada have
"stronger", more restrictive definitions of type equivalence
which require more elaborate declarations. The weaker form of
structural equivalence is required to allow us to derive anony-
mous types for functions.

Types in Ernest consist of type expressions built out of the
following types and type construction operations:

o Basic types, which are integers, reals, booleans, char-
acters, and strings.

o Mappings, which are denoted by the symbol "->" and represent..
the types of functions in terms of the domain and range
types. Thus the logical negation function " has the type

Sboolean -> boolean

A slightly more complicated example is the function .+,
which takes two numeric arguments and returns their sum.

. Its type is

(number x number) -> number
The Curried interpretation (21 of this function, which i2n
the interpretation we use, has the type

- -.+ number -> (number -> number)

2J., -4.
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o Sequences of objects of a given type. For example, strings
are sequences of characters.

string = sequence (character)

o Type variables, which are used to describe the types of
polymorphic f unctions. These are denoted by Greek letters

*(written "alpha", "beta", etc.). For example, the function
*min", defined above, is of type

alpha -> (alpha -> alpha)

where "alpha" can be any ordered type. Similarly, the
function "head", which returns the first element in a
sequence, is of type

sequence(beta) -> beta

o Error, which is the type of any expression that contains a
type error. For example, the expression

3 + 'blind mice'

is of type "error", since a number cannot be added to a
string.

Substitution# Instances, and Unification

The algorithm for type checking in Ernestisbedoth
concepts of substitution, instances, and unification. More com-
plete treatments of these concepts can be found in the literature
[3,41. A substitution is a consistent assignment of type expres-
sions to variables within a type expression, yielding an instance
of the expression. Thus, "String -> string" is an instance of
"alpha -> alpha", but "string -> integer" is not. The first
expression is an instance because "string" was substituted for
both (all) occurrences of "alpha." The second expression fails
to be an instance because the substitution is not consistent.
("String" is substituted for the first occurrence of "alpha", and
"integer" is substituted for the second.)

Unif ication of two given type expressions consists of
finding a set of substitutions that yield a common instance of
both given expressions. For example, consider the following two

*1 expressions:

string -> alpha

beta -> (string -> string)

These expressions can be unified by replacing "alpha" by
** 7 "string -> st ring" in the first expression and substituting

"string" for "beta" in the second, yielding the common instance

3



string -> (string -> string)

The following example shows two expressions that cannot be uni-
fied because no substitutions of alpha and beta will produce a
common instance.

string -> (alpha -> string)

integer -> (integer -> beta)

The Function "Unifyo

Unification is easily defined as an Ernest function. The
function "unifyo takes three arguments: a list of substitutions"S", and two type expressions "mo and On" to be unified. "So
represents all the substitutions that have already been made.
Each such substitution consists of a variable and a type expres-
sion to be substituted for that variable. "Unify" returns a list
containing two items: an augmented substitution list and a type
expression. The augmented substitution list contains everything
in "S" together with all new substitutions made in unifying "m"
and On.' The type expression is the common instance of "m" and
an" if one is found; otherwise it is the type "error."

We are almost ready to describe how "unify" works, but we
need to explain one subtlety first. We have to make sure that
the substitutions we make when we unify "m" and "n" are consis-
tent with substitutions that have already been made (i.e., with
those in "S"). This can be achieved by doing the unification on
the respective representatives "e" and "f" of "m" and "n" from
the substitution list "S." Thus "e" is the type expression
corresponding to "m" in "S" if there is such a type expression;
otherwise it is "m" itself.

Unification works as follows. Representatives "e" and "f"
can be unified only if they are the same kind of type expression
(e.g., basic types, mappings, sequences) or if one of them is a
variable; otherwise, unification is impossible. If exactly one
of them, say "e", is a variable, then the substitution list is
augmented by the substitution of "f" for "e", and the common
instance is "f." If the type expressions are of the same kind,
then they have to be examined more closely. If they are both
basic types, they can be unified if the types are identical;
otherwise, unification fails. If they are both sequence or
mapping types, then they unify if and only if the constituentl
types (i.e., the base types for sequences, the domain and range
types for mappings) unify, so "unify" must be applied recursivel.
in these cases. If both "e" and Of" are variables, then they car?
be unified; if they are different variables, then the substitu
tion list must be augmented to indicate that one variable ha
been substituted for the other.

The Ernest code for the function "unify" is as follows:

4
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define unify( S, m, n ) -

-- Given substitution S, unify type expressions "m" and "n."
-- Assume type variables in "m" and "n" are distinct and
-- universally quantified.

if e_kind = fkind then
if ekind = basic then

if eelem = f_elem then <S,e>
else <S,error>

else if ekind - seq then
if u elem = error then <S,error>
else <Sseq,<seq, uelem>>

else if eLkind - mapping then
if udom = error I

u..rng = error then <S,error>
else <S_ rng, <mapping, rep (u_ do, S_rng) , urng>>

else if e.kind = var then
if e-elem = fLelem then <S,e>
else <insert(<e,f>,S),f>

else <S,error>
else if ekind = var then <insert(<e,f>,S),f>
else if f_kind = var then <insert (<f,e>,S),e>
else <S,error>

where e = rep(m,S)

and ekind:e_val = e

and <e-elem> = e-val -- for basic types and sequences

and <e_dom,erng> = e_val -- for mappings

and f = rep(n,S)

and f.kind:f_val = f

and <f-elem> = fval -- for basic types and sequences

and <fdom,frng> = f_val -- for mappings

and <S_seq,uelem> = unify (S, e_elem, f_elem) -- for sequences

and <Sdom,u.dom> = unify(S,e_dom,f-dom) -- for mappings

and <S-rng,turng> = unify(Sdom,erng, f_ rng)

"Unify" calls two functions, "insert" and "rep." "Insert"

returns the augmented substitution list obtained by adding the
substitution item "xn to the list "S." "Rep" returns the repre-
sentative for the type expression "e" in the substitution list
"S." If "e" is a variable, "rep" searches through "S" for the
type "e"; otherwise it simply returns "e", since only variables

5AIL



are replaced in substitutions. The Ernest definitions for these
two functions are as follows:

define insert( x, S )

-- Insert equivalence pair "<v,r>" into substitution "S."

if r_ kind=var then x:S
else insrt(x,S)

where <v, r_ kind: r val> = x

and insrt(x,S) = if S=<> then <x>
else if rkind=var then a:insrt(x,t)
else x:S

where <v, r_ kind: r val> = a

and a:t = S

define rep( e, S ) =

-- Find the representative of expression "en in substitution
-- list "S."

if ekind=var then
if s=<> then e
else if e=v then rep(r,t)
else rep(et)

else e

where e_ kind:e_ val = e

The Function "Type_Check"

In the preceding section, we presented the Ernest code for
unifying types. In this section, we give the Ernest code to do
the actual type checking. %

We assume that the Ernest code is in the form of an abstract
syntax tree. Thus each expression has associated with it a
"where" clause (which may be empty) and is tagged to indicate
whether it is a literal, an identifier, or a function applica-
tion. We further assume that the function applications have beenv
Curried (i.e., that the applications are to one argument). This
is a normalization, rather than a restriction, since any function'> .
application can be expressed as a sequence of Curried functio
applications. Thus, "2+3" is expressed as

<application, <application,"+",2>, 3>

6

.1'Z



The abstract syntax tree is built by pass I of the Ernest com-
piler.

There are two auxiliary structures that are necessary to
support type checking. The substitution list, discussed above,
contains information about which type variables are bound to
which types. The environment contains the types of previously
defined identifiers and functions, and it also contains the list
of "fresh" variable names.

We can now describe how the type checking function works.
The input expression "expr" is split into its component partsnexpr-part" and "where_part", where "expr-part" is the actual

N expression part and "wherepart" is the associated list of where
clauses. The where clauses list is processed (as described
below) to provide a new substitution list and environment
"wheresubst" and "where_ env." The type checking function is
split into three cases, depending on "expr":

o If "exprpart" is a literal value, then its type is the type
of the literal.

o If "expr-part" is an identifier, then its type is determined
by looking it up in the environment. The returned type is
an instantiation of the type (that is, one in which the
universally quantified variables within it are all replaced
by fresh variables). This step is necessary because the
variables within the type definition of a polymorphic func-
tion are, in effect, universally quantified variables.

o If "expr-part" is an application of function "func" to
argument "arg", then its type is the type returned by "func"
when applied to "arg." This value is determined as follows.
A fresh type variable, "new_vbl", is created to represent
the type of the return value. Both "func" and "arg" are
type checked, yielding respective types "func-type" and
"arg-type." The type expression "func type" is unified with
the type expression

arg-type -> new-vbl

An example may help to illustrate this last case. Suppose
that the application is "head(int list)", where "int-list" is of
type "seq(integer)." "Head" is of type

seq(alpha) -> alpha

If "beta" is the new type variable allocated, then we must unify
... -', the type of "head" with

seq(integer) -> beta

The result of this unification is the substitution of "integer"
for "beta."
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The Ernest code for Ntypecheck" is as follows:

define type_ check (expr, subst, env) =

-- Given substitution list "subst" and environment "env',
-- determine the type of the expression "expr." The value
-- returned is the list <T,substl,envl> where "T" is
-- the type of "expr", "substl" is the new substitution
-- list, and "envl" is the new environment.

if exprkind = literal then
<literal_ type (litval) ,where_subst,where_env>

else if expr-kind = ident then
<inst_. type, subst, inst-env>

else -- exprkind = application
<new_vbl,funcsubst, new_env>

where <func_ subst, functype> =
unify(ar gsubst,funcid_ type,

<mapping, arg_ type, new_ vbl >)

and <newvbl, new env> = freshvbl(argenv)

and <a rg_ type, arg_ subst, arg_ env>
typecheck (<arg,<>,f uncidsubst,funcid_env)

and <f uncid_ type, funcicd_ subst, f uncid_ env> =
type_. check (<f unc, <>>,whet esubst,wher ee nv)

and <where subst,where_ env> =

typecheck_wheres (where_ part, subst,e nv)

and <expr part,where..part> = expr

and exprkind:expr._val = exprpart

and <litval> = expr_val -- for literals

and <inst_ type, inst~e nv> =
remove- quant(id type(idval, env), env)

and <idval> = exprval -- for identifiers

and <func,arg> = exprval -- for applications

The function "typecheck_ wheres" checks the type of eac

definition in a where clause and returns the updated substitutio
list and environment. Its definition follows.

define typecheck-wheres(wheres,subst,ezv) =
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-- Given substitution list "substa and environment "env",
-- augment them with the results of type checking the

-- given list of where clauses (definitions). The
-- returned value is the pair <substl,envl> where
-- "substl" is the new substitution list and "envl" is
-- the new environment.

if wheres = <> then <subst,env>
else typecheck_def(head(wheres),tailsubst, tail_env)

where <tail_ subst, tail_ env > =
typecheckwheres (tail (wheres) ,subst, env)

The function "typecheckdefO checks the type of a single
definition and returns the updated substitution list and environ-
ment. It does this in the following fashion. The definition is
in the form "<name, args,expr>0, where "name" is the name of the
identifier or function being defined, "args" is the list of
arguments (which may be empty), and "expr" is the defining
expression. A list of new type variables, "argvbls", is
created, containing one type variable for each argument in
"args." The expression "expr" is type checked, yielding a type
=epxr-type." The type of the function being defined is then that
type which, given arguments of the types constituting the list
"argvbls", produces an argument of type "expr-type." This new
type information is inserted in the updated environment that is
returned.

As an example of how "typecheck-def" works, consider the

function definition

define f(x,y) = x ^ head(y)

("a" is the string concatenation operator.) The list "arg vbls"

-consists of two fresh type variables for the arguments "x" and
"y", say "alpha" and "beta." Type checking of the expression on
the right hand side yields the type expression "string", and the
substitutions "string" for "alpha" and "seq(string)" for "beta."
Thus, "f" takes one argument of type "string" and another of type
"seq(string)" and returns a result of type "string", or

string.-> (seq(string) -> string)

The Ernest code for "typecheckdef" is as follows:

define typecheck-def (def,subst,env) =

-- Type check a definition. The returned value is the
-- pair <substl,envl> where "substl" is the new
-- substitution list and "envl" is the new environment.

%
<exprsubstnewenv>

9
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where newenv = insert.env(name, funcdeftype,expr-env)

and funcdeftype = functype(argvbls,expr type,
expr_ env, expr_ subs t)

and <expr_ type, expr_ subst,expr_env> =

typecheck(expr, subst,arqenv)

and <arg_vbls,arg-env> = addargs (args,env)

and <name, args, expr> = def

The functions "functype", which builds the type of a func-
tion from the types of its arguments and its return value, and
"addargs", which assigns type variables to the arguments and
updates the environment with the assignments, are defined as
f ollaws :

define f uncL type (argvbls, expr_ type, env, subst) =

-- Return the type of a function, given the types of its
-- arguments ("argvbls") and the type of its returned

-- value ("expr..type).

if argvbls = <> then rep(expr- type,subst)
else <mapping,rep(firstargvbl,subst) ,

f unc_ type (rest, exprtype, env, subst) >

where first argvbl :rest = argvbls

define add args(args,env) =

-- Add type variables corresponding to the list of
-- arguments ("args") to the environment. The returned
-- value is <vbls,envl>, where "vbls" is the list of type
-- variables added and "envl" is the new environment.

if args = <> then <<>,env>
else <newvbl :restvbls, insenv>

where insenv = insertenv(first_arg,new vbl,new_env)

and <new_vbl,newenv> = freshvbl(rest-env)

'.'. and <restvbls,restenv> = addargs (rest,env) ii
and first arg:rest = args

The following low-level functions were used without bein
defined in the above definitions:

10
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p
0 "Literal_ type(litval)" returns the type of the literal value

"litval. N

o "Id-type(idval,env)" returns the type of the identifier
"idval" by looking it up in the environment "env."

.o"Freshvbl(env)" creates a fresh variable, returning the

newly created variable and the updated environment.

o "Remove- quant(t,env)" gives type expression "t" a unique set
of fresh variables and returns the new type expression and
an updated environment. For example, it would replace

alpha -> (alpha -> integer)
by

gamma-> (gamma-> integer)

where "gamma" is a fresh variable.

o "Insert- env(name, type,erv)" returns a new environment which
includes the information that the identifier named "name'
has type "type."

These functions are straightforward to implement.

Two details have been glossed over in the above description.
One is that the types of Ernest primitive functions must be
defined before any other functions can be type checked. This can
easily be accomplished by preloading the environment with these
type definitions. The other is that we have not discussed the
scope of identifiers and their visibility within an environment.
We assume these details are taken care of by the functions that
interact with the environment.

In addition, two type construction operations that are
"- essential for a useful language, enumerated types and discrim-

inated unions (variant records), have not been addressed. We
believe these two type classes can be integrated into our type
checking algorithm without great difficulty.

V Correctness and Efficiency

There is much to be said for the simplicity and clarity of
functions defined without type declarations and, indeed, this
should continue to be an option. Nevertheless, there are two
strong arguments for allowing users to provide type information:
correctness and efficiency.

Correctness. If the user is permitted to specify the types
of functions and constrain the allowable operations on data, this
additional information can be used to help detect program errors.
For example, it is probably not meaningful to add telephone

11
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numbers to Social Security numbers, even if they are both repre-
sented by integer values. The type checker we have described
cannot prevent such abuses.

Efficiency. There may be situations in which a user, know-
ing that the full generality of a polymorphic function is not
necessary, is willing to trade flexibility for efficiency. For
instance, if a function involves only arithmetic operations on
its arguments, the type checker will determine that the arguments
can be either real or integer. The decision to perform real or

4. integer operations will be made at run-time, incurring some
overhead. If the user could optionally specify that all argu-
ments are reals, for example, the compiler could generate more
efficient code that handles only real values. An attempt to call
the function with integer arguments, however, would result in a
type violation.

Improvements can be made in type checking thoroughness and

in run-time efficiency by selectively introducing type declara-
tions. The language changes required to support this capability
are subjects for further research and development.

Conclusions

We have presented a program for type checking Ernest pro-
grams, which is written in Ernest. The program actually derives
the type of functions, so that function definitions do not
require type declarations. The type checker supports polymorphic'
functions and derives the most general interpretation of each,'
function's type. In addition, the text of this program very,.-
closely follows textbook examples of type-derivation and type-.-
checking algorithms.
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